会員の研究紹介コーナー

《こんな論文書きました》


ケシ科の多年生林床草本オサバグサを材料として，光環境の変化に対する根長／葉面積比と比根長（根長／根重比）の反応を調べた研究です。林床植物の根長／葉面積比は弱光環境と比較して強光環境で高くなる傾向があり，この根長／葉面積比の増加は，蒸散速度が必然的に高くなる強光環境における葉の脱水回避に寄与していると考えられています。比根長は根の伸長効率の指標であり，比根長が大きいほど根への乾物投資量あたりの伸長量が多くなります。

オサバグサの場合，弱光環境に生育している個体（L 個体）と比較して，強光環境に生育している個体（H 個体）で根長／葉面積比が高くなり，比根長が低くなりました。一方，林冠ギャップの形成を模した突然の弱光環境から強光環境への変化に曝された個体（LH 個体）では，根長／葉面積比は H 個体と同等になりましたが，比根長は H 個体のようすに低くはならず，L 個体と同等のままでした。このように LH 個体の比根長が H 個体のように低くならなかったために，LH 個体の根長／葉面積比は迅速に増加しました。

見かけ上，LH 個体の比根長は強光環境に順化しなかったことになりますが，LH 個体の比根長が L 個体と同等のままであったのは根系のかたちが変化したためであったと考えられます。LH 個体の根系では，L 個体や H 個体と比較して内部リンク（根系内の隔り合う 2 つの分岐点を結んだ直線部分）が短く，外部リンク（1 つの分岐点と根端を結んだ直線部分）が長くなっていました。理論上，内部リンクは外部リンク 2 本分あるいは外部リンク 1 本と内部リンク 1 本を合わせた 2 本分の通量面積を持つ必要があるため，内部リンクは外部リンクよりも太くなるといわれています（Fitter 1987, Fitter et al. 1991）。したがって，LH 個体において内部リンクよりも外部リンクの伸長が優先されたことが，LH 個体の高い比根長の実現に関与していたと考えられます。

以上のことから，突然の弱光環境から強光環境への変化に曝されたオサバグサでは，高い比根長を維持するように根系のかたちが変化し，このことが根長／葉面積比の迅速な増加に寄与していたと考えられます。

【引用文献】

（環境科学技術研究所 谷 享）

*運輸先 〒039-3212 青森県上北郡六ヶ所村大字尾敷字家ノ前 1-7 環境科学技術研究所 谷 享
Fax: 0175-71-0800 E-mail: tani@ies.or.jp

熱帯アジアの陸稲の耐乾性の改良のため深い根系による土壌からの水吸収の向上が試みられてきている。遺伝的・栽培的改良による深根性の実現には根系発達に及ぼすそれぞれの要因の相対的な重要性と交互作用の機能を理解する必要がある。本論文では異なる遺伝的背景を持つ陸稲・水稲11品種をフィリピン・ルソン島の陸稲栽培地3土壌、2窒素レベル（0, 90kg/ha）下で栽培した場合の根系の深さに関わる形態形質について、品種、環境（土壌・窒素）要因、およびそれらの交互作用の影響を解析したものである。

根形質間で品種、環境要因の大きさは異なり、冠根数、SRW（比根重）、R/S 比は品種要因、深根比率（DRR）、根重は環境要因の影響が大きかった。また品種×土壌交互作用は DRR、根重など有意であったのに対し、品種×窒素の交互作用はいずれの形質でも小さく、品種評価において窒素レベルの違いはそれほど重要でないことが示唆された。

深根性にもっとも関与する DRR と根重には有意な品種差異があった。indica(Vandana)、aus(Dular) 陸稲品種は DRR が最も大きかったが、R/S、SRW は小さく根への乾物分配を効率的に深根性に活用しているといえた。これらの品種は主に雨季の短い地域で栽培されており適応機作として興味深い。一方 japonica 在来陸稲品種は根重が最も大きく、高い R/S 比と太い冠根を伴っていた。大きな導管径による水移動抵抗の軽減効果については今後検証が必要であろう。

DRR の土壌間変動からは土壌水分の低下によって陸稲根系は浅根化しやすいと考えられた。加えてファイトマー大ささと根分布の変動の関連が示唆され、今後ファイトマーの発達と根伸長の生理的関連を明らかにすることは意義があると思われる。また根重でみた根生育の品種×環境交互作用の内容を AMMI モデルを用いて解析した結果、遺伝グループごとに土壌タイプへの適応が異なることが示唆された。各グループで適応度の高かった土壌が育成地・栽培地の土壌タイプに近いことは興味深い。

一般に陸稲栽培地のような隔離での生産性向上には品種改良・導入が、栽培技術、資材導入より有効と認識されている。今回示された深根性の品種差異も遺伝的改良の可能性を示す。しかし同時に示された有意な品種×土壌交互作用や土壌要因の影響は、品種の深根性発現を最大化するためには品種の適切な配置と根生育に対する土壌物理化学的阻害要因の把握と軽減も重要であることを示唆する。

（農業生物系特定産業技術研究機構 作物研究所 近藤始彦）

*連絡先 〒305-8518 群馬県つくば市観音台2-1-18 農業生物系特定産業技術研究機構 作物研究所 稲栽培生理研究室 PAX 029-838-8837 E Mail : chokkei@naro.affrc.go.jp

- 174 -

発根促進物質としてはオーキシン系化合物がよく知られていますが、オーキシン系化合物は発根促進活性以外に茎の伸長促進活性・葉の上偏生長促進活性・殺草活性などといった副作用を示すためにその使用方法が制限されています。これに対し、筆者らがパチルス属菌培養液から単離・構造決定した発根促進物質 N-（フェニル基）コハク酸アミド (PESA) はこういった副作用を示さない、新規な発根促進物質であることを既に発表しております (Soejima et al. 2000, Plant Cell Physiol. 41:197)。ところで、オーキシン系化合物ではインドール醜酸、ナフチル醜酸、フェニル醜酸とともにオーキシン活性を示します。本報ではこれと同様の発想で PESA のフェニル基をインドリル基、ナフチル基に置換した化合物を合成し、生物学的活性を調べました。その結果、インドリル基、ナフチル基に置換した化合物も PESA 同様に強い発根活性を示す一方で、茎の伸長促進活性や上偏生長促進活性は示さないことが分かりました。そこでアルキル基の炭素数をさまざまなに再編したり、カルポキシル基にさまざまなエスデルを導入した類縁化合物を合成 30 種類合成し、発根促進活性を比較しました。インドール醜酸や 2,4-D などのオーキシン系化合物ではアルキル基の炭素数を奇数とした類縁化合物では活性が維持され (例えばインドール醜酸)、偶数とした類縁化合物では活性が失われることが知られています。これはアルキル基の炭素数が奇数の類縁化合物は植物体内で β 酸化により炭素が 2 つずつ切り出され、最終的に活性型であるインドール醜酸や 2,4-D まで代謝されますのが、炭素数が偶数の類縁化合物では最終的に活性型により炭素数が 1 つ多く化合物に代謝されてしまうため、活性を示さないことが明らかにされています。この点について、今回合成した類縁化合物ではそのような傾向はまったく認められませんでした。このことから、筆者らが研究対象としている新規発根促進物質はオーキシン系化合物とは異なり、単一の活性型化合物が存在するわけではないことが推察されます。また、すべての化合物について酸性を測定したところ、遊離のカルボキシル基をもつ化合物ではその分子の酸性が高まるという相関が認められました。

これらの化合物のうちいくつかについては試験研究目的に限り雪印種苗（株）でサンプルを提供が可能です。ご興味のある方はご一報いただければ幸いです。

（雪印種苗（株）技術研究所 副島 洋）

*連絡先：〒069-0832 北海道市西野幌 36-1 雪印種苗（株）技術研究所
Fax: 011-380-2050 E-mail: Hiroshi.Soejima@snowseed.co.jp
水の浸透と地下水の影響をもとに、根の栄養が解析のための鉄則かかもしれません。もちろん科学でも同じこと。今回は、その鉄則に果敢に挑戦した2つの研究について紹介します。

植物が土から吸った水は、根・茎・葉を通り抜けて大気中へと飛び出して行きます。これは常識です。この常識が怖い。この常識のために、これまで多くの人が、水は土→植物→大気の一方向に流れると信じて疑わなかったのです。しかし、ここ最近、どうもそうではないという研究が立て続けに提出されてきました。何故、植物が「地中深くの水を吸い上げては、せっせと地表にその水を放出する」と何故、全く非従順な行動に出る場合があるらしいのです。つまり、水が、土→植物→土、と流れていく。そののです、逆流するのです。

今回紹介する論文の著者達は、この非従順な植物の行動を農業で利用してよろうと考えました。水を逆流させる植物の隣に作物を栽培してやれば、深い土→植物→浅い土→作物、と言った具合に水が流れるはずだと考えたのです。そうすれば、作物は根を伸ばさずに地中深くの水を利用できてしまうのではないか？それが可能なら、雨が少ない所でも農業ができるのではないか？と彼らは考えました。植物に水を与えるのに植物を使うという夢のようなスプリングクラーシステム。それもそれで非常識なアイデアを、彼らはこともあろうに早速が深刻なアフリカの国で実際に実験をやってみようという、これまで非常識な行動に出たのです。思えばリスキーな研究でありますよね？聞きけば著者の一人は修士課程の学生だったとのこと。結果が出なかったら卒業も危ない上に、研究費もパー。何て事も・・・結果が出た今だから笑っていられますが、もし結果が出なかったら・・・・。

そうなのです。彼らは見事に仮説通りの現象を捉えることに成功したのです。スプリングクラー植物としてキマメ・セスパニアを選び、作物には南部アフリカで主食のトウモロコシを栽培しました。一連の研究では、それぞれの植物がどんな水を吸っているか突き止めるために、水素の安定同位体と言うものを利用しています。水分子に含まれる水素には重い種類の水素が僅かに含まれ、普通の水素と重い水素の割合は環境によって変化します。したがって、降水と地下水ではその割合が異なるために識別する事ができるのです。そして、植物から水を取り出して普通の水素と重い水素の割合を測れば、降水と地下水のどちらをどれだけの割合で吸ったか推定する事ができます。この方法は、森林で利用されてきたもので、農地で利用できるか分かりませんでした。そこで第1報目では、農地に生育するキマメ・セスパニアでこの方法を試した結果、両植物とも地下水と降水を吸う割合が時期によって変化する様子を捉えることに成功し、なぜそのように変化するのかについて仮説も報告しています。
第2報目が、いよいよ本題です。ここでも同じ方法を使いましたが、今度はトウモロコシがどんな水を吸っているかが問題でした。そして、トウモロコシから取り出した水の普通の水素と重い水素の割合を測定した結果、地下水がキマメの根を通じてトウモロコシに到達していた事実が明らかになったのです。残念ながら、セスパニアではその現象を捉える事はできませんでした。著者達は、それだけの証拠では不安だったらしく、さらなる確証を得るためにミニチュア農地を作ってキマメとトウモロコシを一緒に栽培する実験もしています。今度は水の動きがはっきりと分かるように、重い水素の濃度が極端に高い人工水を地下水として与えた結果、やはりキマメがスプリンクラー機能を持つことを再確認できました。さらに、キマメを黒い布で覆うとより多くの水が移動する事も確認でき、手を加えればスプリンクラー機能をコントロールできる可能性も出てきたのです。そうなると、農業技術として発展させる余地もあるわけで、今後はこの点をさらに追求して行くと締めくくっています。これ続けていければ、非常識が常識になってしまう日が来てしまうかもしれません！来て欲しい！（いや～、そんな事よりも何よりも結果が出て本当に良かったですね。どうやら学生も卒業できたようですですね・・・）

興味のある方は御一読を！

（名古屋大学大学院生命農学研究科　関谷信人）

*連絡先：〒464-8601　名古屋市千種区不老町　名古屋大学　大学院生命農学研究科　E-mail：j0210106@inbox.nagoya-u.ac.jp

- 177 -