サウジアラビアの沙漠地域に持続可能な緑化システムを構築するプロジェクト——凍結濃縮法排水処理技術と深根苗移植栽培技術の開発と利用——
サウジアラビア海洋性沙漠開発プロジェクト 緑化・生物生産グループ

1. プロジェクトの概要
文部科学省の「人・自然・地球共生プロジェクト」の課題の一つとして、「広域水循環予測及び対策技術の高度化」に関わるプロジェクトが1999年から進められてきている（http://kyousei.aesto.or.jp/k051open/ptop_ihtm および http://kyousei.aesto.or.jp/k051open/p0_ihtm）。このプロジェクトを実施するために、三菱重工業が主導機関となった学際的なプロジェクトチームが編成され、防災科学技術研究所、地球フォーラム研究センター、京都大学防災研究所及び鳥取大学乾燥地研究センターおよび上智大学に所属するメンバーが参加した（図1）。プロジェクト全体の目的は、紅海からの海洋性上昇気流および大気下降気流中の湿分が多く、水資源確保の可能性が高いサウジアラビア、ジェダ近郊に位置する海洋性砂漠に、健全で持続的な水循環システムを構築し、環境を改善するためのマスタープランを作成することであり、その目的を達成するために、目標や手法を異にするいくつかのグループが設置された。そのひととに、水循環型緑化・居住空間創生・生物生産システム開発を通じてオアシス創生を目指すグループがある（以下、緑化・生物生産グループ）。本稿では、この緑化・生物生産グループが開発した2つの基幹技術を中心に本プロジェクトの概要を紹介する。

2. 緑化・生物生産グループの目的
中東諸国では現在、人口の急増が続いており、それを養うための食糧生産が急務となっている。これからの地域の多くは、蒸発散量に対する降水の比率が極めて低い乾燥地に属しており、作物を栽培するために膨大な量の水資源が灌漑用水として消費されている。しかも、その水資源の大部分が涵養できない深層地下水（化石水）に依存しており、その枯渇や地盤沈下が深刻な問題となっている。この問題を解決するには、新たな水資源を開発するとともに、限られた水资源の有効利用を図る必要がある。
そこで、緑化・生物生産グループでは、これまでにほとんど活用されていない生活排水や浅層地下水の有効利用に基づいた持続可能な緑化システムを構築することを目指した。本グループが開発した主要な技術は、（1）凍結濃縮法排水処理技術と、（2）深根苗移植栽培技術である。本プロジェクトでは、この2つの技術を利用して持続可能な緑化システムを構築することによって砂漠の中にまず点としてのオアシスを作り、次に点と点を結びつけてオアシスネットワークを形成することを計画した。このネットワークによって、健全な水循環に基盤を置いた生態系復合システムを作り出すことができ、乾燥地においても持続可能な農業を確立できると考えたからである。
３．持続可能な緑化システム構築に関する基幹技術

１）凍結濃縮法排水処理技術

有限な深層地下水の使用量を削減する一つの方策として、これまで廃棄されてきた生活排水の再利用がある。このプロジェクトでは、対策技術として凍結濃縮法を用いて、生活排水を再利用する技術開発を行った（黒田・井口 2003、手塚ら 1995）。この技術は、「塩類等、種々溶質を含む水溶液が凍結する際、氷結晶中の原子間距離が他の分子と比較すると非常に小さいため、氷結晶は溶質を取り込まれずに成長する。すなわち、水溶液中に含まれる氷の結晶が濃縮されると水溶液が存在するようになる」という原理に基づいている。生活排水を凍結させて生成した氷を分離、回収、溶解して塩分等の不純物の少ない再生水を作るとというものである（図2）。

これまで廃棄していた生活排水をこの方法で処理することで、不純物や塩分濃度を低減させ、植物の育成、灌漑用水など、新たな水資源として再利用できるだけでなく、生成された氷を冷凍源としてビル、アパート、グリーン・ハウス、工場等の冷房などに利用することもできる（図3）。平原中気温が高いため冷凍源が必要であるため、本技術は乾燥地において極めて有効である。また、凍結濃縮法を用いた排水再利用装置は、現在、高度水処理技術の主流となっている逆浸透膜処理と比較して、小規模な処理が容易であるため、短時間で現地に展開できる可能性が高い。

２）深根苗移植栽培技術

乾燥地では土壌表層の水は容易に蒸発してしまうが、下層には比較的長期間に渡って水分が保持されていることが多い。そこで、植物が下層の土壌水分を利用して生活し、生長を続けることができるよう深根苗を移植して栽培する方法を開発した。すなわち、従来の育苗および定植技術では、浅い根を持たず植え植えるため、水分が多く残っている土壌下層まで根が達していない水分を吸収するまでに枯れてしまうことが多い。そこで、深根苗移植栽培では、あらかじめ導根筒（根の伸長を下方向に誘導するための円筒状の栽培容器）を利用して幼い根を持つ深根苗を育成し、移植することによって、植物の根を水分の残っている土壌下層に達し、生長できるようにすることを目指している（図5）。

浅層地下水が少なく、再供給もあまり期待できないような場所では、予め導根筒の中に設置した灌漑パイプを利用して苗の根の先端域に直接灌漑することによって、蒸散によって失われ

根の接種も容易、効率的で適応性が高い。したがって、不明な種、個体間の差異が見られる場合、根の接種を考慮すると良い。根での接種法は、特に長根系の植物、または深層の根系を持つ植物に適している。このような植物では、根の接種が重要である。

図6 通常苗と深根苗における水収支

深根苗の育苗においては、根の伸長能力と栄養収集能力に影響を与える要素を考慮する必要がある。特に、根の伸長速度を高め、根の栄養収集能力を増やすことが重要である。これにより、深根苗の育苗率を向上させることが可能である。

図7 根の接種方法

一般的に、根接種法は、植物の種子、幼苗、または成熟した植物の根を用いるが、根接種法の適用範囲は、植物の種類、生育条件、根の特性、目的に大きく依存する。特に、長根系の植物、または深層の根系を持つ植物に適している。このような植物では、根の接種が重要である。
引用文献
手塚正博・白土博康・浅野孝幸・鳥羽篤也・飯田憲一・小林裕一・石岡克彦・田尻耕一・赤間久興・佐藤定美 1995. 凍結による排液の希釈化処理、北海道立試験場報告、No.295, p81-99.