第27回根研究集会（福島）プログラム

日時　2007年11月24日（土）11.00～
会場　福島テルサ3階
　あぶくまの間（口頭発表、機器展示、ポスターセッション）、つばきの間（懇親会）
主催　第27回根研究集会事務局（東北農業研究センター福島研究拠点　福島県農業総合センター）
後援　（独）農研機構　東北農業研究センター

10.30－10.55 受付
****** 口頭発表 <午前の部> enisariossthesia
座長：辻 博之氏（発表12分、質疑3分、質疑延長2分可）

10.55－11.00 歓迎の辞 小柳敦史 会長

11.00－11.15 O-1 アミノ酸がイネ幼植物の根に及ぼす影響と吸収特性
　○二瓶直登1,2・増田さやか2・亀 慶樹2・菅野里美2・中西友子2（*1
　福島県農業総合センター、*2 東京大学大学院農学生命科学研究科）

11.15－11.30 O-2 分配および代謝からみたトウモロコシ根系形成過程における糖の役割
　安藤史博・○小川敦史・川島長治（秋田県立大学生物資源科学部）

11.30－11.45 O-3 マイクロ酸素センサーを使った透水条件下での根の表面酸素濃度の測定
　○高橋三男1,2・甘木輝緒2・D. K. Gladish3（*1 東京高専 物質、*2 拓殖
　大工、*3 Miami University）

11.45－11.50 総合討議

11.50－12.50 昼食

****** 会務報告、授賞式、記念講演 enisariassthesia
　奨励賞は受賞者の紹介1分・挨拶＋講演15分・質疑4分で計20分、
　功労賞および特別賞は受賞者の紹介1分・挨拶＋講演20分・質疑4分で計25分

12.50－12.55 祝辞 小柳敦史 会長

12.55－13.10 会務報告・授賞式 小柳会長・阿部事務局長 座長：唐原一郎 副会長

13.10－13.30 学術奨励賞 森林生態系における根圏動態解析の高度化に関する研究
　○里村多香美氏（北海道大学北方生物圈フィールド科学センター）

13.30－13.50 学術奨励賞 マメ科植物の根粒特異的成分並びに根粒形成制御機構に関する研究
　○塔野岡（寺門）純子氏（中央農業総合研究センター・日本学術振興会
　特別研究員）
13. 50—14. 15 学術特別賞 根系分布、土壌タイプおよび気象条件からみたテンサイの生産性に関する研究
○伊藤博武氏※1・林 茂樹氏※2・小松輝行氏※1（※1 東京農業大学生物産業学部、※2 医薬基盤研究所薬用植物資源研究センター北海道研究部）

14. 15—14. 40 学術功労賞 作物の根系構造と環境反応の機能的意義に関する研究
○山内 章氏（名古屋大学大学院生命農学研究科）

14. 40—14. 55 ティータイム

***** 口頭発表 <午後の部> ***

座長：犬塚義明氏（発表 12 分、質疑 3 分、質疑延長 2 分可）

14. 55—15. 10 O-4 オランダ品種トマト台木が日本品種トマトの生育に与える影響
○中野明正・中野有加・佐藤木英和・鈴木克己・河崎 靖・川崎浩樹
・安場健一郎・黒崎秀仁・大森弘美・坂上 修・高市益行（野菜草業研究所）

15. 10—15. 25 O-5 カンゾウ根系における安定同位体自然存在比の分布特性
○山本知雄※1・林 茂樹※2・山本 豊※3・柴田敏郎※2・翼 二郎※1（※1 京都工芸繊維大学、※2（独）医薬基盤研究所、※3（株）樫本天海堂）

15. 25—15. 40 O-6 オオムギ原形質変型アクアポリン遺伝子の同定と塩ストレスによる発現制御
○杉本元気・且原真木（岡山大学資源生物科学研究所）

15. 40—15. 55 O-7 イネ深根性関連遺伝子座 Brol のファインマッピング
○宇賀優作※1・奥野時敏※2・矢野昌裕※1（※1 生物研、※2 研波大）

15. 55—16. 00 総合討議

***** ポスターセッション 22 課題＋奨励賞 1 課題 ***

16. 00—16. 50

P-1 水稲根が有する鉄過剰耐性機構 －鉄排除能及び鉄酸化能の発現－
野部卓人・○辻博之（北海道農業研究センター）

P-2 土壌改良資材の部分施用によるモモ再生根の特徴
○梅宮善章※1・谷口弘行※2・井上博道※1・中村ゆり※1（※1 果樹研究所、※2 福井県農業試験場）

P-3 ナスおよびナス近縁種における根のカドミウム局在性（1）－レーザー－アフレーション ICP-MS を用いた主根と側根の金属元素の直接分析－
○森 伸介*1・馬場浩司*1・篠田佐依子*1,2・山口紀子*1・荒尾知人*1 （*1 農業環境技術研究所、*2 日本学術振興会特別研究員）

P-4 ナスおよびナス近縁種における根のカドミウム局在性（2）レーザーアプレーション ICP-MS を用いた根の横断面の金属元素の直接分析
○篠田（篠木）佐依子*1,2・馬場浩司*1・森 伸介*1・山口紀子*1・荒尾知人*1 （*1 農業環境技術研究所、*2 日本学術振興会特別研究員）

P-5 移植栽培を用いた根域制御と堆肥施用によるホウレンソウのカドミウム低減効果
○菊地 直（野菜茶業研究所）

P-6 塩ストレス下におけるイネ根系の可塑性発現および糖代謝関連遺伝子等の発現
○豊福恭子・小川敦史・川島長治（秋田県立大学 生物資源科学部）

P-7 側根形成におけるオーキシン分配の影響
○鈴木雄裕・小川敦史・我彦広悦（秋田県立大学生物資源科学部）

P-8 浸透圧ストレス条件下でのアスコルビン酸代謝関連物質の投与がトウモロコシ幼植物体の生長に与える影響
○佐藤大子・小川敦史（秋田県立大学生物資源科学部）

P-9 塩素栄養がイネの 15N・13C 自然存在比の体内分布におよぼす影響
○妹尾俊吾・井 吾二郎（京都工芸繊維大学大学院工芸科学研究科）

P-10 水ストレスがイネ器官間における 13C 自然存在比の分布に及ぼす影響
○狩野麻奈*1・大隅義明*1・井 吾二郎*2・北野英之*3・山内 章*1 （*1 名古屋大学大学院生命農学研究科、*2 京都工芸繊維大学、*3 名古屋大生物機能開発利用研究センター）

P-11 イネにおける気孔伝導度の推移と根系発育との関係
○今泉俊輔・大隅義明・山内 章（名古屋大学大学院生命農学研究科）

P-12 株元からホモプラス根腐病菌汚染土壌までの距離がキュウリの萎凋症状と根系の発達に与える影響の解析
○永坂 厚・中嶋美幸・門田育生（東北農研）

P-13 耐湿性の異なるコムギ品種間の過湿土壌条件下での根系発育と収量の比較
○岡田友梨絵*1・吉田朋史*2・林恵理子*1・藤井 淵*2・辻 孝子*2・山内 章*1 （*1 名古屋大学大学院生命農学研究科、*2 愛知県農業総合試験場）

P-14 コムギとミズタカモジの雑種第一代の耐湿性と根の特徴
○小柳敦史*1・川口健太郎*1・高田兼則*2・笹沼恒男*1 （*1 研究所、*2 近農研、*3 横浜市大）

P-15 セイヨウミヤコグサ毛状根培養系を利用したアーバスキュラリー菌根菌胞子の増殖
○福田健一・大門弘幸（大阪府立大学大学院環境科学研究科）

P-16 養場条件における根系菌および菌根菌の接種がラッカセイ生殖および根系
形成におよぼす影響
○森原百合花・田島亮介・阿部淳・森田茂利（*1 東京大学大学院農
学生命科学研究科附属農場、*2 東京大学大学院農学生命科学研究科）

P-17 施肥が異なる養場間でのオオムギ・ダイズの生育と根圏・非根圏の土壤微生物
量の比較
○朱穂・土肥哲哉・阿部淳・山岸俊和・森田茂利（*1 東京大学
農学生命科学研究科附属農場、*2 東京大学農学生命科学研究科）

P-18 夏まきダイズ跡地と根系菌質材接種による翌年のダイズ根粒着生向上
○辻博之（北海道農業研究センター）

P-19 イネ種子根における内部組織の発達の環境応答—根の片側をマンニートール処
理する実験系—
赤井由紀・田原一郎・阿部淳（*1 富山大・理・生物、*2 東京大
院・農学生命）

P-20 シロイヌザナの根の形態形成を三次元レベルでモニターする—過重力の影響—
○安藤名央子・田原一郎・玉置大介・神保浩一郎（富山大院・理工）

P-21 画像解析による根長測定方法の改良と自動化
○田島亮介・森田茂利（東京大学附属農場）

P-22 根系による栄養繁殖を行うイヌガラシ属雑草の生態
○宮崎・佐藤純（*1 畜産草地研究所、*2 福島県会津農林事務所
会津坂下農業普及所金山普及所）

P-23 奨励賞 森林生態系における根圏動態解析の高度化に関する研究
○里村多香美（北海道大学北方生物圏フィールド科学センター）

機器展示
根長画像解析システム・ミニライソトロン・土壤水分計類
ナモト貿易株式会社 岡本淳
土壤水分計、酸素電極等の紹介 旭光通商株式会社 倉橋昭弘

書籍等販売 会場後方で、研究会刊行の書籍・グッズなど販売しています。

16.50—17.00 会場片づけ
17.15—19.00 懇親会 あつまる間
森林生態系における根固動態解析の高度化に関する研究

里村 多香美

（北海道大学 北方生物圏フィールド科学センター．E-mail: takami_satomura@ybb.ne.jp）

大気中の二酸化炭素濃度の上昇に伴う地球温暖化が懸念される中、森林生態系の炭素吸収能力をより正確に見積もることが望まれている。植物を各器官に分け、新たに生産された量を積み上げて生態系の純一次生産（NPP）を推定する場合、植物体の地下部、特に細根を経由する炭素動態を考慮しないことが多い。そのため、従来の推定法は植生の炭素吸収能力を過小評価し、土壌からの炭素の放出量を過大評価し、結果として生態系の炭素吸収能力を過大評価している。先駆的な研究では、森林生態系のNPPの10-60％が植物細根の生産に寄与されると推定されている（1,2）。従って、森林生態系の炭素吸収能力を評価する際には、植物細根の動態を把握し、植物細根を介在した炭素の動き、根固における炭素の動態を把握することが重要となる。

森林生態系での植物細根の動態研究の壁となっていたのは、根系が見えない土壌中に存在することであった。我々は、普段から地上部の葉の展葉や葉緑をこの目で見て、生成と枯死の過程を認識することができる。それならば、根系もこの目で見てみよう——そういった発想に始まり、機器の発達によって適用が実現したのが、ミニライソトロン法である。この手法では、土壌中に埋設した中空のチューブにCCDカメラを挿入し、土壌とチューブの境界面に現れる細根を観察する。個々の根片を追跡調査することで、画面あたりの土壌の生産量と枯死・分解量の知ることができる。この手法を日本の森林でいち早く導入する機会に恵まれ、ミニライソトロン法についての技術的な紹介（3），得られた値から根のターンオーバーを算出する際の留意点（4）に関してレビューすることでミニライソトロン法についての見識を広げ、実際に機器を扱った研修やレビューや成果を基に従来が小規模な講演会を行う機会を得たに至った。

ミニライソトロン法を導入して、岐阜県高山市の冷温帯落葉広葉樹林で一年間の調査を行い、様々な興味深い結果を得た。A）細根の生産量／細根量の値は土壌深度が深くなるにつれて低下する傾向がある。B）細根の生産量を含む分解サイクルによって土壌に付加された炭素量は、1.8 t C ha⁻¹ year⁻¹であり、これはこの森林の生態系涵養（NEP）の約85％に相当した。C）細根の生産速度には季節性があり、冬よりも夏の終わりから秋にかけて高い値を示し、それは群落の生産性のピークと同時期であった。根を介して動く炭素の一部は、植物の根に共生する菌類（根菌）に利用されている。森林生態系での根菌への炭素の移動を知るべく、細根に共生する菌類の現存量調査を行っている（7,8）。

以上の結果より、根細をめぐる炭素の動態を高精度に把握することで、森林生態系の炭素吸収能力の見積もる信頼性が高めるとともに、植物体の地上部・地下部の関係や光合成生産と細根の生産性の関係など、生物学的に興味深い知識を得ることができた。今後も研究を続けていき、より深く根固とその環境についての理解を深めたい。

＜参考文献＞
マメ科植物の根粒特異的成分並びに根粒形成制御機構に関する研究
塔野岡（寺門）純子
中央農業総合研究センター・日本学術振興会特別研究員 PD
(E-mail: jiera@affrc.go.jp)

マメ科植物の多くは根に「根粒」という特殊な器官を発達させている。その内部ではバクテライドとよばれる形態に分化した根粒菌による空窒素の固定が行われているため、宿主植物の窒素栄養上、極めて重要な器官として知られている。一方、宿主植物は光合成産物である有機炭素化合物をバクテライドに供給することにより、両者の間には共生関係が成立している。この根粒という器官は一つの独立した器官であり、根粒中で特異的に生産される成分や、他器官よりも高濃度の含有率を示す成分が知られている。一方で、根粒の着生数は地上部からの情報伝達によって過剰に着生することのないように厳密にコントロール（オートレギュレーション）されている。

今回、私達はマメ科植物根粒内にサイクリック AMP や β-フェネチルアミンなどの特異的成分が含まれること、また、植物生体成分であるプロシアミノステロイドやポリアミンが、ダイズの根粒着生制御に関与している可能性を見出したので報告する。

【マメ科植物根粒内の特異的成分】
サイクリック AMP
サイクリック AMP (cAMP) は主に哺乳動物やバクテリア、粘菌類でその役割が調べられており、細胞外からの情報を細胞内に伝達するセカンドメッセージとしての機能が知られている。一方、高等植物における cAMP の機能についてはその存在量の低さゆえ、これまであまり明らかにされてこなかった。私達は宿主植物と根粒菌の共生の場である根粒内には、情報伝達物質として機能する cAMP が存在するのではないかと予測し、様々な根粒内の cAMP を Enzyme immunoassay 法を用いて測定した。その結果、多くのマメ科植物の根粒から他の植物器官と比較して高濃度の cAMP が検出された。また、根粒菌が cAMP を菌体外に放出することを確認し、根粒内 cAMP が根粒菌に由来している可能性を見出した。次に、根粒形成に伴う cAMP 濃度の変化を、エンドウおよび根粒を過剰に着生するダイズの変異体（En6500）とその親株（エンレイ）の間で比較した結果、エンドウ、ダイズ（エンレイ）においては根粒形成に伴う cAMP 濃度の上昇が確認されたが、En6500 では濃度の変動は確認されなかった。さらに、植物体の根に膜透過性の db-cAMP を処理したところ、En6500 において、著しい根粒着生数の減少が確認された。これら一連の結果から、根粒内の cAMP が根粒着生の制御に関与するのではないかと推定した。

β-フェネチルアミン
生体アミンは様々な生理活性をもつことが知られている。中でも高等植物において、それらの多くはアルカロイドの前駆体となることが知られているが、合成や機能については未知の部分が多く残されている。私達は多くのマメ科植物に芳香族アミンの一種、β-フェネチルアミン（β-PEA）が根粒組織内に特異的に出現することを見出した。また、非マメ科樹木を含む多種植物の根粒について β-PEA の分布を調べた結果、根粒菌 Bradyrhizobium との共生によって生じる根粒中
のみで検出されること、また本成分が根粒組織内のバクテリオドに局在し、根粒の成熟に伴って濃度が上昇することなどを確認した。一方、培養根粒菌やそれらの培養液からはβ-PEAが検出されなかったことから、本成分は根粒内で共生特性に生産されることが明らかになった。

【マメ科植物における根粒着生制御】
ブラシノラグドがダイズの根粒着生に及ぼす影響
植物ステロイドホルモンであるブラシノステロイドは植物の生育において様々な働きを行うだけではなく、近年では病害抵抗反応を全身的に誘導することが報告されている。私達はブラシノステロイドの中でも最も強い生理活性を示すブラシノラグドを根粒菌接種後のダイズ親株（エンレイ）および根粒超着生変異体（En6500）に葉面処理し、根粒着生への影響を調べた。この結果、根粒超着生変異体（En6500）の根粒着生数は濃度依存的に減少し、同時に根の伸長抑制と茎伸長の促進が見られた。一方、エンレイにおいては茎伸長の促進のみで、根粒着生の抑制は見られなかったが、ブラシノラグド生合成阻害剤（プロナソール）を葉面処理すると親株エンレイにおいても根粒着生数が増加し、茎伸長が著しく抑制されることを確認した。以上の結果から、地上部のブラシノラグドがダイズの根の発達および根粒着生の制御に関わっていることが明らかになった。

ポリアミンがダイズの根粒着生に及ぼす影響
低分子塩基性物質のポリアミンは細胞の伸長、分裂、増殖など植物の生長調節に必須の役割を果たしており、近年では病原菌の感染症における植物側の防御対策に関する機能も報告されている。私達は一連の研究過程で、根粒超着生変異体（En6500）とその親株エンレイでは、根齢葉の組織内ポリアミン組成やそれらの中和量に大きな差が認められることを指摘し、ポリアミンと根粒着生数に何らかの関係があるのではないかと予測した。まず、圃場で栽培したエンレイとEn6500の各器官におけるポリアミン含有量を比較した結果、En6500ではエンレイよりもブトレシン含有量が高く、またスペルミジン、スペルミン含有量が低い傾向にあることがわかった。そこで、ポリアミンの根粒着生への影響を調べるために、エンレイとEn6500の地上部にポリアミン（ブトレシン、スペルミジン、スペルミン）を処理した。その結果、エンレイでは処理による根粒の影響はほとんど見られなかったのに対し、根粒超着生変異体（En6500）では根粒着生の著しい抑制が確認され、中でもスペルミンの処理効果が最も高いことが確認された。また、ポリアミンを地上部に処理した区においては、茎伸長の促進とともに根の発達抑制が同時に観察された。一方、スペルミジンの合成阻害剤（MDA74038）を地上部に処理して、親株エンレイのスペルミジン濃度を低下させたところ、根粒着生数の増加が確認され、対照区よりも茎伸長が抑えられていた。これらの結果から、ダイズにおいては地下部の根粒着生制御に植物体のポリアミン代謝が密接に関連している可能性が示唆された。次に、根粒菌接種後のダイズ地上部へのブラシノラグド処理がポリアミン代謝に及ぼす影響を調べた。その結果、親株エンレイにおいてはポリアミン濃度の有意な変動がなかったのに対し、En6500では葉および根に含まれるポリアミン濃度の上昇が確認された。これらの結果から、ダイズにおいてはブラシノラグドが植物体内のポリアミン代謝の調節を通じて根粒着生の制御を行っており、根粒超着生変異体ではそれらの代謝異常により根粒着生制御機構が正常に働いていない可能性が示唆された。
根の研究 (Root Research) 16(4) (2007) 報告（第27回根研究集会《学術特別賞》発表要旨）

根系分布、土壌タイプおよび気象条件からみた テンサイの生産性に関する研究
伊藤博武*1林茂樹*1、小松隆行*1
*1東京農業大学生物産業学部
*2医薬基盤研究所薬用植物資源研究センター北海道研究部
（E-Mail: h-ito@bioindustry.nodai.ac.jp）

北海道網走市は大規模機械化畑作農業が展開され、テンサイ、パレオショおよびムギ類（秋播きコムギと二条オオムギ）が栽培されている。ただし、淡色黒ポカ土が占める南部地区の収量水準は高いが、多腐植質黒ポカ土と褐色森林土からなる西部地区の収量水準は低い。この作物取量の地域性差問題について、テンサイを取り上げ、要因解明と解決策の構築に向け根系分布・土壌タイプ・気象条件の観点から研究に取り組んだ。

1. テンサイの生育パターンと根系（ひげ根）確立の時期
砂糖原料であるテンサイでは茎葉がソース、貯蔵根がシングになる。網走では、5月上旬に観察を実施すると6月中旬から7月上旬にかけて茎葉が急激に繁茂し、7月上旬から9月上旬に貯蔵根が急激に肥大する。「隠された半分」の根系は、現場で観察してみると、貯蔵根が肥大し始める7月上旬頃には確立していた。

2. 根が浅くなる土壌タイプのテンサイ畑ほど夏日に激しく萎れた
土壌タイプ別に農家圃場でRDI（根の深さ指数）を目安に実態調査すると、淡色黒ポカ土では根張りが深く萎れ難い発生が少なく、濃色森林土では根張りが浅く激しい萎れが発生して最も低収になった。また、多腐植質黒ポカ土では両者の間の中間的傾向が認められ、テンサイの生産性は根系分布、萎れ程度と密接に関係していた。

3. 晩秋の年の年雨土壌タイプ間の収量格差が大きくなった
土壌タイプ別の収量データから、土壌タイプ別の収量格差が認められた。特に、RDI（根の深さ指数）が低く土壌タイプの違いが収量に影響を及ぼしている。また、土壌タイプ別の収量格差が認められた。

4. 収量格差の主因は気孔開度を介しての光合成の遺伝子によってあった
土壌水分ストレスが著しい盛夏でも、淡色黒ポカ土では根張りが深く、心土からの水分吸収が十分であるにもかかわらず、気孔が全開状態で高い光合成速度を維持された。褐色森林土では根張りが浅く心土層からの水分吸収を制限したため、気孔が間接して蒸散による水分ストレスが最大限に抑えられ、光合成速度が低下した。このように、根張りの深さに基づく土壌タイプの水分吸収量の違いによって盛夏における気孔開度、すなわち光合成能力に差が生じ、物質生産量が異なるため、土壌タイプ別に収量格差が認められた。

5. 萎根の拡大と生産性の向上について
土壌水分ストレスが著しい盛夏でも、淡色黒ポカ土では根張りが深く、心土からの水分吸収が十分であり、気孔が全開状態で高い光合成速度を維持された。褐色森林土では根張りが浅く心土層からの水分吸収を制限したため、気孔が間接して蒸散による水分ストレスが最大限に抑えられ、光合成速度が低下した。このように、根張りの深さに基づく土壌タイプの水分吸収量の違いによって盛夏における気孔開度、すなわち光合成能力に差が生じ、物質生産量が異なるため、土壌タイプ別に収量格差が認められた。
作物の根系構造と環境反応の機能的意義に関する研究
山内 章（名古屋大学大学院生命農学研究科）
（連絡先：ayama@agr.nagoya-u.ac.jp）

「緑の革命」における作物の生産性向上の生理生態学的基礎に「理想的草型」の概念がある。そこで、高い生産性を確保する形質として個々の葉の高い光合成能力に加えて、田间エネルギーを効率的に補足しうる茎葉部の「かたち」の重要性に注目し、またその有効性を実証した。つまり、作物個体の成長や機能を、作物体を構成する個々の部位、器官の成長や生理機能の単なる寄せ集めではなく、それらの関の機能的役割分担と有機的な相互作用によって発揮される、ということである。

したがって「理想的草型」と同じ考え方をとると、根系全体の機能は、個根の機能だけではなく、それが組み合わさってできる根系の「かたち」が重要であると考えることができる。このことが「理想型根系」を考える出発点になる。

しかし、このような捉え方をするためには、根系を構成する要素の発育学的、生理学的性質に関する理解が深まっている必要がある。根系に関する研究は、茎葉部に比べてきわめて立ち遅れている。著者らは、これまでの研究で個体の根系は様々な種類の個根から構成されていることを明らかにしてきた。具体的には、根系を構成する根が形態学的、組織学的、伝導性としての根の性質に注目して、根系の主要な構成要素である側根やそれを発生させている主根にも異形根性が存在することを指摘した。

理想的根系を考える場合、植物が生育している環境条件が明確に把握されていることが前提である。これまでの根系研究（ストレス条件）下での根系構造については述べている。まず、世界で栽培されている主要なイネ科、マメ科作物種の根系構造を定量的に比較し、それらの機能的意義を整理し、分野した。また、耐早性・耐湿性、あるいは収量性と、根系の機能的構造との間には密接な関係が存在することを指摘した。

また、異形根間では、環境に対する反応性が異なることを明らかにし、さらに環境変化に対して、変化しやすい（可塑的）形質と、変化しにくい（保守的）形質を分類・整理した。これらを踏まえて、数種のイネ科作物、マメ科作物、イモ類を対象にして、乾燥、過湿、欠水、土壌水分変動、高地温、アレルギー、窒素施肥に対する根系の環境反応と個体成長との関係を解析することによって、可能性の程度の異なる根が互いに保険しあって根系全体の生長・機能を維持し、個体成長にとってこうした根系反応が重要な役割を果たしていることを明らかにした。

実際に作物が栽培される圃場の環境は、時間的に不均一であるとともに、時間とともに変動する特性がある。その例として、世界的にみる主要な大田や、技術開発が焦めの課題になっている栽培水田での稲作栽培条件下における稲作を取り上げ、繰り返しその乾燥条件と蒸気条件（降雨が蒸発による過湿）に対する根の可塑的な反応、個体の成長に重要な役割を果たしていることを明らかにした。

現在、QTL解析や染色体部位交換系統の使用によって、可塑性は遺伝的制御を受けること、そして根の種類や（乾燥）ストレス程度によって関与する遺伝座が異なることを明らかにしつつある。根の形質は遺伝的制御だけではなく、環境の影響を決定的に大きく受けすることを根の研究者は知り尽くしている。そのことは、たとえば、遺伝子型×環境相互作用として捉えることができ、従来、統計学的確率に基づいて「推定」されてきたわけであるが、現在では、遺伝子の実態として実証できるようになり、QTL×環境相互作用として捉えようになっていることによって、根の形質を実際の育種に取り入れることが可能化し、現実性を帯びてきたと言える。そのためには、目標とする形質と育種環境条件の対定を基礎とした、理想型根系の定義が鍵を握っている。
0-1
アミノ酸がイネ幼苗植物の根に及ぼす影響と吸収特性
二瓶直登*1,2)・増田さやか*2)・紅葉一樹*2)・菅野里実*2)・中西友子*2)
*1福島県農業総合センター、*2東京大学大学院農学生命科学研究科
(*nihei_naoto.01@pref.fukushima.jp)

【背景・目的】
有機農業の普及には有機物や有機質肥料の詳細な肥効特性を把握する必要がある。近年、土壌への有機物の施用で増加する有機態窒素と生物の関与についていくつか報告がある（松本 2003）が、有機態窒素の実態に関しては不明な点も多く、植物への吸収特性は明らかでない。本発表では、有機農業が盛んに行われているイネを用いて、有機態窒素の最小単位であるアミノ酸に着目し、アミノ酸がイネ幼苗植物の生育、特に根の生長に及ぼす影響とその吸収特性について検討した。

【試験方法】
・試験I：窒素源としてのアミノ酸の作用　イネ（日本晴れ）を用い、窒素源として20種類のアミノ酸、NaNO3、NH4Clで育成試験を行った。窒素源（5mM）を0.5％アガロース（無窒素変改木村氏 B 100mL）に溶解してブランクボックスに移し育苗培地とした。種子は次亜塩素酸ナトリウムで滅菌後、クリーピンベン内で植え込み無菌条件下で栽培した。植物は人工気象器（25℃、16h/8h、16kLux）で3週間培養した。試験は3反復で行った。
・試験II：グルタミンの吸収特性について　Glnを窒素源（1mM）とし、50mlサンプル管内で水耕栽培（無窒素変改木村氏 B 250mL）した。12日目に窒素濃度0.1mMの溶液に入替え、48時間後に14C-Gln (2.5kBq/mL) を含んだ窒素0.05、0.1、0.25、0.5、1.0、5.0mMの各溶液に入替え、4時間毎に採取した溶液を液体シンチレーションカウンターで測定し吸収速度を計算した。試験は4反復で行った。1mM区の一部を3h後にIPプレート（FujiFilm）でヨコタクしてオートラジオグラフィー像を得た。また根への詳細なGln吸収経過を検討するため、GlnをN源（1mM）として育てたイネの根に14C-Gln (18.5kBq/ml) を含むゲルを接触させ植物体への標識Glnの移行をリアルタイムオートラジオグラフィーイメージングシステム（頼 2006）で撮影した。

【結果・考察】
・試験I：窒素源としてのアミノ酸の作用　無機態窒素と同等以上の窒素吸収量を示したアミノ酸はAsn、Gln、Ala、Glyであった。無N区より窒素吸収量が少なく生育阻害がみられたのは、Ile、Leu、Met、Phe、Thr、Try、Valであった。Asn、Gln区の根系は、種子根、側根とも生長が旺盛であった。イネの窒素含有量が多い試験区では、培地中アミノ酸の減少量も多かった。この時培地中には無機態窒素が測定されなかったことから、アミノ酸を直接吸収して窒素源として生育したと考えられた。特に、Gln、Asnは無機態窒素を代謝する際に最初に同化されるアミノ酸であり、吸収後もスムーズに代謝され育成に有利に働いたと推察される。
・試験II：グルタミンの吸収特性について　Glnの吸収速度は溶液濃度によって異なり、0.02umol/h（溶液濃度 0.05mM）～0.5umol/h（溶液濃度 5mM）であった。IP画像で吸収3時間後のGlnの分布を検討したところ、吸収されたGlnは側根を含め根全体で観察され、地上部への移行もみられた。さらにリアルタイムオートラジオグラフィーのリアルタイム画像で詳細なGln吸収を解析した結果、Glnは根全体から吸収され、特に根の先端で主に吸収を行っていると考えられた。これは地上部からの蒸散を抑制させた条件下で観察できた。Glnは主に根の先端で吸収された後、導管内に入り蒸散による水の流れとともに地上部へ移行するのではないかと推察された。
以上の結果、イネは無機態以外の窒素源として一部のアミノ酸でも生育が可能であった。Gln吸収は濃度別で吸収速度が変わり、吸収部位は根全体だが特に根端で吸収量が多いことが分かった。

- 172 -
植物の根系は土壌中の養分を吸収するなど多機能を持ち、根系の生存および発育にとって重要な器官である。しかし根系の形成過程は今日でも十分には解明されていない。本研究では、これまでの研究で根系形成に関与していると示唆されている糖の代謝素、トウモロコシ種子根各部位における糖代謝に関連酵素の活性を測定し、in situでの糖代謝に関連酵素の活性部位を特定することにより、根系の形成における糖の役割を明らかにすることを目的とした。

【材料と方法】
供試材料としてトウモロコシ（品種：ホワイトポップ）を用い、3日間の間隔処理し、1/2濃度のホウリン水耕栽培（pH 6.0）中で水耕栽培を行い、播種後3、4、5日目にサンプリングを行った。種子根間隔から1cm間隔で切開し、各部位におけるスクロース、グルコース、フルクトース含有量を測定した。また根端から0.1cm部位（細胞分裂および伸長部位）、3.4 cm部位（側根発生部位）、6-7 cm（側根発生中の部位）、9-10 cm部位および12-13 cm部位（側根発生した部位）におけるスクロースの代謝に関与する Invertases（Cell-wall-bound invertase, Neutral invertase, Soluble acid invertase）およびSucrose synthaseの活性を測定した。さらにNitro blue tetrazolium（NBT）を用いた方法（Wittich and Vreugdenhil 1998; Serggeva and Vreugdenhil 2002）および抗 Invertase 抗体を用いた方法により、根系における Invertase および Sucrose synthaseの局在性を検出した。

【結果と考察】
種子根軸上の各部位における各糖の含有量、グルコースが最も高く、続いてスクロース、フルクトースの順であった。含有量は根端1cm部位において他の部位に比べスクロースでは3〜5倍、グルコースでは3〜12倍、フルクトースでは3〜10倍高い値を示した。地上部から転移によって運ばれるスクロースを最初に代謝する Cell-wall-bound invertase, Neutral invertase, Soluble acid invertaseおよびSucrose synthaseの活性も、根端から0.1cm部位において他の部位でそれぞれ、2倍、5倍、10倍、2.5倍高い値を示した。3種類の Invertasesの中では、Soluble acid invertaseが他の2種類よりも10倍高い活性を示した。播種後2日目の経過にともない、Neutral invertase以外の酵素の活性は各部位で低下した。このとき糖の含有量も低下しており、これらの結果は生長期に伴う代謝量の変化を示しているものであると考えられた。in situで酵素活性部位の局在性を観察したところ、NBTを用いて染色法では、InvertaseおよびSucrose synthaseの活性が種子根および側根の根端部分の細胞伸長部位に当たるところで検出された。抗 Invertase抗体を用いた方法では、種子根根端の細胞伸長部位、側根発生部位では側根原基周辺の皮层および皮質で Invertaseの局在性が検出された。側根原基では Invertaseの局在性は検出されなかった。これらの結果より地上部から転移によって運ばれるスクロースは根系形成時に細胞分裂帯および伸長帯が存在する種子根および側根根端部分に分配され、InvertaseおよびSucrose synthaseによりグルコース、フルクトース、UDP-グルコースが生成されることが示された。これらの物質はセルロースやエネルギーとなる物質に代謝され細胞形成などに関与したり、浸透圧調節に関与する溶質として細胞伸長に関与したりするなどして、根系形成に大きく寄与していることが示唆された。
マイクロ酸素センサーを使った湛水条件下での根の表面酸素濃度の測定

高橋三男（東京高専・物質）仁木輝緒（拓殖大・工）D.K.Gladish (Miami University)
(taka@tokyo-ct.ac.jp)

演者らはこれまでエンドウ（Pisum sativum L.cv.Alaska）を用いて、根中心柱柔細胞が崩壊し、空隙を形成することを報告してきた。この空隙は湛水条件下でも生じることから低酸素濃度環境においても誘導されると考えている。それぞれ根の組織内外においての酸素濃度はどのようなものであるのかについて興味を持たれる。

根の組織内及び外の酸素濃度を測定するには、微小域を測定可能とする極めて微小なセンサーが必要となる。これまでは微小酸素電極を用いて根の内外の酸素濃度を調べられている。しかし電極を用いた方法は、微小電極の作成・扱いに高い技術を要し、容易に測定できるものではない。今回我々は酸素濃度に応じて蛻光減衰反応を示す光ファイバープローブ型酸素マイクロ・センサーを用いて酸素濃度の測定を試みた。酸素マイクロ・センサー・チップのガラスファイバープローブを、ステレンレスチール・ニードルの中に保護されており、測定時には、ニードル部から出して行った。センサー・チップがニードルの中に入るのである。プローブ・ハウジングは、ポリプロピレンの1mlシリンジ・チューブを使っており、励起波長460nm、検出波長590nmを使用している。チップ先端の径は、50μmである。光ファイバープローブは、測定対象物の酸素を消費せず、電気化学センサーより応答性が速く、小型で軽量な点が特長である。

供試材料としてシロバインソゲン（Phaseolus sp.）を用いた。1000ml容量のトールピーカーを栽培容器とし、ビーカーの内側に蒸紙を巻きその内側にパラメタライジングを入れ、375mlの蒸留水を加え、アルミホイルで覆った。オートクレーブで滅菌を行い、発芽・生育条件は25℃で連続暗黒とした。

播種5日目、種子直径2cmの蒸留水（DW）を入れ、播種直後（長さ約5cm）の湛水処理とした。根を先端（Tip）、中間部（Middle）および基部（Basal）の3部位点に分け、2時間後にそれぞれの部位で酸素濃度を計測した。また湛水処理24時間後、再度根を3部位部位に分け、各部位の酸素濃度を計測した。なおそれぞれの処理において、根と5cm以上離れた点を対照として計測した。形態は根の各部位から採取し、観察した。

表は各部位で測定された酸素濃度を示した。

<table>
<thead>
<tr>
<th>Root position</th>
<th>Root Surface Oxygen concentration (mg/L)</th>
<th>Control Oxygen concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After flooding for 2hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>5.18</td>
<td>7.63</td>
</tr>
<tr>
<td>Middle</td>
<td>2.54</td>
<td>7.34</td>
</tr>
<tr>
<td>Tip</td>
<td>0.13</td>
<td>7.38</td>
</tr>
<tr>
<td>After flooding for 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>3.39</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>2.59</td>
<td>5.94</td>
</tr>
<tr>
<td>Tip</td>
<td>3.47</td>
<td></td>
</tr>
</tbody>
</table>

湛水下における根の先端表面の酸素濃度は極めて低く、中間部・基部にると酸素濃度が上昇する。またそれぞれの対照での値はほぼ同じ値を示すことより、各部位における酸素濃度はそこにおける酸素濃度を示し、その部位における酸素消費量を示しているものと考えられる。24時間後においては先端部位の酸素濃度はそれほど低下せず、湛水処理2時間の中間部位の酸素濃度値に近い値を示す。切断前後では湛水処理2時間では空隙は観察されなかった。湛水処理24時間では根は約1cm伸長し、この時間の先端から0.8→2.3cm部位において、中心柱に空隙が観察された。

根の伸長はそれ以降も継続されるので、根は新たな酸素供給経路を獲得したのかもしれない。切断観察ではこの部位に空隙の形成が見られ、この空隙が酸素供給と何らかの関わりをもつと考えられる。
0-4 オランダ品種トマト台木が日本品種トマトの生育に与える影響
中野明正*・中野有加・佐々木英和・鈴木克己・河崎靖・川崎浩樹・
安場健一郎・黒崎秀仁・大森弘美・坂上修・高市益行
野菜茶業研究所 高収穫施設野菜研究チーム
（*連絡先 E-mail: anakano@affrc.go.jp）

【緒言】
オランダでは2010年にはトマト収量は70t/10aになると予想されている。一方、日本では、一般にオランダのトマトに比べ糖度は高いが収量は20t/10aと低いレベルである。日蘭の収穫差の要因について、品種、環境制御、栽培法等種々の影響が考えられるが不明白な点が多く、総合的に改善していく必要がある。前報で日蘭の品種比較を行った結果、根の性質に一因がある可能性が示唆された。そこで、本報告では日蘭の品種間で接枝木を行い、根の違いが生産性に与える影響について評価した。

【材料と方法】
1. 接ぎ木苗の作製：日本の品種、桃太郎コルト(M)とオランダ品種、QUEST(Q)を用いた。木太台木とすると、桃太郎コルト/桃太郎コルト(M/M), 桃太郎コルト/QUEST(M/Q), QUEST/QUEST(Q/Q), QUEST/桃太郎コルト(Q/M)の4種類の植物体を作製した。
2. 栽培条件：第1花が開花した2007年3月28日に本国のロックウールスラブに各区6株定植した。高純度プラスチックハウス（高さ4.5m、幅20cm長さ90cm高さ7.5cm）内に設置したロックウールスラブに定植し（栽培密度、4株/スラブ）、ハイワイヤー栽培を行った。山崎処方標準の培養液（EC1.3～1.7ds/m）によるかけ流し栽培を行った。
3. 測定項目：果実および茎葉の重量を測定し、根量は燃焼法により推定した。糖度は、非破壊糖度計（ジャワ社製）により測定した。出汁速度は、栽培終了時の2007年7月2日の11時から12時にかけて地上部の切り口を脱脂綿で覆い、その重量増加から推定した。

【結果と考察】
M/QはM/Mに比べ茎葉の新鮮重が減少し果実重が増加した。また、Q/MはQ/Qに比べ茎葉の新鮮重が増加し果実重も微増した。単位茎葉新鮮重当たりの果実生産量はM/QでM/Mに比べ増加し、Q/MでQ/Qに比べ減少する傾向にあった。藤と葉の配分（藤のFW/葉のFW）は、Q/MとQ/Qで、それぞれ、2.1と1.9、M/MとQ/Mでは同じ1.6であった。
以上の結果から、根は果実と茎葉への配分率には影響するが、葉と茎の配分率には影響が小さいと考えられた。

出汁速度は、地上部の性質に依存しており、M/Qは、Q/Qに比べ出汁速度が低下し、Q/MはM/Mに比べ出汁速度が増加した。
地上部がQUESTの場合、桃太郎に比べ、受光体勢が良く個体全体としての二酸化炭素固定量が多くなり、根への新規同化物の供給が多かったと考えられた。それにより根の代謝活性も高くなり、出汁速度が大きくなったと考えられた。
カンゾウ根系における安定同位体自然存在比の分布特性

山本 知佳 1*・林 茂樹 2・山本 豊 3・柴田 敏郎 2・戸 二郎 1

1 京都工芸繊維大学 2（独）医薬基盤研究所 3（株）桜本天海堂
（E-mail: tatsumi@kit.ac.jp）

カンゾウは根やストロンに栄養成分であるグルチルリチシン (GL) を蓄積し、古来より薬用として利用されている。近年その需要は高まっているが、中国産カンゾウの輸出禁止などにより国産での栽培化が急務となっている。しかし GL の効率的に蓄積されるような栽培方法は確立されておらず、日本薬局方の基準である 2.5%を超えることが困難な状況である。カンゾウの生理学的な知見は少なく、GL の集積プロセスを解明することは栽培の効率的な生産技術の開発に重要である。

最近、窒素や炭素の安定同位体分布が植物体内における炭素・窒素の代謝過程や根系における物質移動と密接な関わりを示唆する知見が報告されており、物質移動の傾向も密接な関わりがあると考えられる。しかし根のδ 13C 自然存在比（δ 13C）やδ 15N 自然存在比（δ 15N）の体内分布と、物質動態や生産における物質集積との関係は現在までほとんど調べられていない。

本研究では、生理活性や物質移動と GL 蓄積の関係を明らかにするため、カンゾウ根系における物質集積過程を個体レベルで分析することを目的とし、シナジーに蓄積する物質の一つである GL 集積と安定同位体自然存在比の体内分布との関係を調査した。

材料と方法

京都工芸繊維大学生物資源フィールド科学教育研究センター内の圃場に直径約20cm・長さ1mの培養ビニールのパイプを立て、そこでウラカンゾウ（Glycyrrhiza uralensis Fisch.）を栽培した。根を2006年10月および12月、2007年6月に採集した。地下部をストロンと根系に分け、さらに根系は主根と分枝根をそれぞれ土壤深度（0-20cm, 21-40cm, 41-60cm, 61-80cm, 81cm以下）に切り分けた。地上部は葉を除き、12月抜きのため、6月はパイプ内の上層・中層・下層（深さ5cm, 50cm, 95cm）の土壤も採集した。サンプルは乾燥・粉碎し、δ 13Cおよびδ 15Nを同位体質量分析計（Delta plus, Finnigan MAT, Germany）を用いて分析した。また、根系については GL 濃度を測定し、根系におけるδ 13C・δ 15N の分布との関係を調査した。

結果と考察

どの時期においても、土壌の深さが深くなるに従って主根・分枝根ともにδ 15N が大きくなる傾向を示した。その勾配は主根よりも分枝根が大きかった。しかし12月では主根・分枝根ともに10月および6月と比較して変動が小さく、主根では1%以内であった。δ 13C は根の深さ部位ほど大きく異なる傾向があった。いっぱい土壌には、δ 13C とδ 15N ともに土壌の深さによる勾配はみられなかった。

GL 濃度は根の深さ部位ほど高くなる傾向がみられたが、10月の分枝根においては反対に深い部位で低かった。全ての季節において個体レベルで主根・分枝根とともに GL 濃度とδ 15N の間に相関があった。10月は主根では正、分枝根では負と異なった相関関係があった。δ 13C と GL 濃度の間には相関がみられなかった。

根内部ではδ 15N とδ 13C ともに根の深さによる勾配がみられたが、土壌には差が無かったことから、これらの値は植物体内の生理活性や物質移動を反映していると考えられた。また根のδ 15N において、季節や部位により分布パターンはなまっていても GL 濃度との相関関係がみられたことから GL 蓄積と関連していることが推察される。

※本研究の一部は平成18年度厚生労働科学研究費補助金（ヒトゲノム・再生医療等研究事業）の補助を受けて行った。
O-6

オオムギ原形質膜型アクアポリン遺伝子の同定と
塩ストレスによる発現制御

杉本 元気, 且原 真木*
岡山大学資源生物科学研究所
(*E-mail : kmaki@rib.okayama-u.ac.jp)

水の吸収は高等植物の根系の主要な機能の一つである。アクアポリンは水の透過孔（水チャネル）を形成する膜タンパク質であり、細胞及び分子レベルで水輸送に重要な役割を果たしている。本研究では原形質膜型アクアポリン（PIP : Plasma membrane Intrinsic Protein）に注目し、塩ストレス環境下におけるオオムギ（*Hordeum Vulgare* cv. Haruna-nijō）の幼根の水輸送に関して分子生物学的観点から研究することを目的とした。

既知のオオムギ PIP 遺伝子 4 種に加え新規の PIP 遺伝子を単離するため、オオムギの EST データベースに基づく PIP 遺伝子のコンティグ配列に従い PCR プライマーを設計した。RT-PCR を行い、新規に 6 種のオオムギ PIP 遺伝子を単離した。

根におけるオオムギ PIP 遺伝子の塩ストレスによる転写制御を調査するため、リアルタイム RT-PCR による定量解析をした。25℃、暗条件で水耕栽培させた発芽後 4 日齢のオオムギの根を用い、塩ストレスは 100 mM 及び 200 mM NaCl を処理時間 1 h, 2 h, 4 h, 8 h, 12 h, 24 h として与えた。

発芽後 4 日齢のオオムギ幼根においては HvVP1:2 の転写レベルが最も高く (>10⁸ copies/μg total RNA)、次に HvVP1:3 の転写レベルが高かった (>10⁸ copies/μg total RNA)。オオムギ PIP 遺伝子 10 種の転写産物のうち HvVP1:2 は 60% を占めていた。

塩ストレスとして 100 mM NaCl を与えた場合、いずれの PIP 遺伝子の転写レベルにもコントロール (0 mM NaCl) との顕著な差は見られなかった。一方 200 mM NaCl を与えた場合、HvVP1:2 や HvVP1:3, HvVP1:4, HvVP2:1, HvVP2:2, HvVP2:3 の転写レベルは塩処理 2 h 以降で減少した。これは高濃度の塩ストレスに対して水透過性を低下させ細胞外への脱水を防ぐため、PIP 遺伝子の発現が抑制されると考えられる。

次に新規に単離した PIP が水輸送活性を持つかどうか調べた。アフリカツメガエルの卵母細胞を用いた機能発現系によって解析したところ、HvVP2:3, HvVP2:4 は単独で発現させた場合にも高い水輸送活性があるのに対し HvVP1:2 や HvVP1:3 は単独では水輸送活性が無かった。しかし, HvVP1:2 は HvVP2:1 や HvVP2:4 との共発現により, HvVP1:3 も HvVP2:1 や HvVP2:3, HvVP2:4 と共発現させることで水輸送活性が増加した。HvVP1:2 と HvVP1:3 との共発現による水輸送活性の变化は見られなかった。

HvVP1:2 や HvVP1:3 はオオムギ幼根で高い転写レベルを示し、塩ストレスに対する応答性を示した。またこれらは特定の HvVP2 型アクアポリンとの共存下で水輸送活性が増加した。このことから HvVP1:2 や HvVP1:3 も HvVP2 型と共に、オオムギ幼根の水透過性において重要な役割を果たし、発現制御によって水透過性の制御に関与し耐塩性に寄与していることが示唆された。
イネ深根性関連遺伝子座 Drl のファインマッピング

宇賀優作 1*・奥野勇敏 2・矢野昌裕 1（1. 生物研、2. 筑波大）
（*連絡先：yuga@affrc.go.jp）

深根性は根系の形態や分布を制御するとともに、植物が乾燥条件下で土壌深層から水を吸収するうえで重要な形質である。本研究では銘柄由来の新規な深根性関連 QTL を見出し、この QTL を単一遺伝子座として選択地図上に位置づけた。

演者らはフィリピンの銘柄品種 Kinandang Patong (KP) と水稲品種 IR64 の F2 世代を用いて根維管束の形態変異に関する QTL 解析を行い、第 9 染色体に後生木部導管 II に関与する QTL (qMXA-9) を見出した。この QTL の解析のため、BC2F2 世代を用いて栽培・調査する過程で、集団内で浅根型と深根型の個体が分離していることを発見した。IR64 は浅根型を、KP は深根型を示すことから、この分離は KP が持つ深根性の遺伝子が関与しているのではないかと考え、集団内の個体を逐段により浅根型と深根型に分けて、遺伝子座を調査した。その結果、深根性に関与する QTL が、第 9 染色体の qMXA-9 近傍に存在することが明らかとなった。

詳細な遺伝解析を行うために、深根性を定量的に評価するバスケット法の利用を検討した。すなわち、8 集合前後の中から出てくる全根数に対してバスケットの底から出てくる根の割合を深根率と深根性を求める。IR64 の深根率は平均 1.6% であったのに対し、KP の深根率は平均 72.6% であった。

深根性に関与する QTL を単一遺伝子座としてマッピングするために、BC2F2 世代から QTL の近傍領域で組換えが生じた 8 個体を選抜し、その自殖後代（BC2F3）からさらに組換え自殖固定系統（BC2F4）を選抜した。各固定系統について、20～23 個体をポット栽培し、バスケット法によって求めた深根率から遺伝子型を推定した。BC2F4 系統のうち、QTL の周辺領域が IR64 型に固定した系統の深根率は平均 2.6% と IR64 とほぼ同じ割合を示したのに対し、QTL の周辺領域が KP 型に固定した系統の深根率は平均 40.4% であった。この結果から、各系統の QTL における遺伝子型を明確に決定できた。その結果、QL を Indel マーカー ID07_14 と ID07_17 の間に単一遺伝子座として位置づけることができた。そこで、この QTL を新たに深根性関連遺伝子座 Drl (Deeper Rooting 1) と命名した。
水稲根が有する鉄過剰耐性機構 — 鉄排除能及び鉄酸化能の発現 —

〇野副卓人*・辻博之**

*北海道農業研究センター・根圏域研究チーム（連絡先 e-mail: nozoe@affrc.go.jp）
**北海道農業研究センター・水田耕作研究チーム

水田土壌において、還元元に伴って土壌溶液中に生成する二価鉄は、水稲の生育阻害要因のひとつである。この阻害要因に対して、水稲根は、鉄の侵入を防ぐいくつかのメカニズムを有していると言われている。そこで、溶液栽培により、このメカニズムを構成する、鉄酸化能と鉄排除能の発現、およびその関係について検討した。

【材料と方法】
1. 水稲品種「はしのゆめ」の種を、ろ紙を敷き、蒸留水を入れたシャーレ（直径 9 cm × 高さ 6 cm）に入れた。これを、30℃のインキュベータ内で、5 日間培養し、苗をつくった。
2. 水稲溶液栽培用培地2) 10L を入れた容器内に、苗を固定した発芽スチロール製の板を浮かせ、30℃のインキュベータ（12h/12h 明暗）内において 19 日間栽培した（4連）。
3. 鉄酸鉄(II) （FeSO₄・7H₂O）、または、Fe(III)-EDTA（ナトリウム塩）を蒸留水に溶かし、100ppm（mgL⁻¹）の鉄溶液を調整した。これらの鉄溶液 100mL を 100mL の三角フラスコに入れ、さらに上で栽培したイネを入れて、根の部分がすべてこの溶液に浸るようにした。三角フラスコの口とイネの間は、パラフィルムで閉じた。これを、インキュベータ内に 24 時間静置した。
4. 24 時間培養の開始と終了時における溶液中、鉄濃度、及び根の鉄被膜の鉄量を測定した。

【結果と考察】
1. 24 時間培養の開始時の溶液中の二価鉄量は、FeSO₄、Fe-EDTA 区でそれぞれ 101、98mgL⁻¹であった。培養の結果、Fe-EDTA、FeSO₄ 区で減少した溶液量はほぼ同じであった（それぞれ 16.5、15.5mL）。また根の乾物重は、FeSO₄、Fe-EDTA 区でいずれも 55mg であった。
2. 24 時間培養の終了時における溶液中の二価鉄量は、FeSO₄、Fe-EDTA 区でそれぞれ 101、98mgL⁻¹であった。培養の結果、Fe-EDTA、FeSO₄ 区で減少した溶液量はほぼ同じであった（それぞれ 16.5、15.5mL）。また根の乾物重は、FeSO₄、Fe-EDTA 区でいずれも 55mg であった。
3. 根の被膜の鉄量は、FeSO₄ 区（1.07mg）と比べて、Fe-EDTA 区（0.12mg）において、著しく少なかった。これは、鉄被膜の形成を阻害する鉄化合物量が、Fe-EDTA 区では EDTA がはるかに少ないことが主な原因であろう。
4. 植株吸収されたと推察される鉄の量（d）(b-c:FeSO₄、Fe-EDTA 区でそれぞれ 0.13、0.06mg) は、

【引用文献】
1) 野野利秋 (1976) 水稲の根過剰繁殖対策に関する作物栄養学的研究 北海道大学農学部邦文紀要第 10 巻, pp.22-68
土壤改良資材の部分施用によるモモ再生根の特徴
梅宮善幸1・谷口弘行2・井上博道1・中村ゆり1
1) 農業・食品産業技術総合研究機構 果樹研究所, 2) 福井県農業試験場
(e-mail: umemiya@affrc.go.jp)

果樹園では、若木の成長促進や樹勢の低下を回復させる目的で、部分深耕と有機・無機資材を併用した土壤改良が行われる。深耕園では、根群の分布する範囲の土壤について1樹当たり5〜6か所タコツボや溝状に掘り、土壤改良資材を混合して埋め戻すことにより、改良部位の根量増加が図られるが、この理由として部分的な土壌物理性状や養分状態が改善されたためと考えられている。しかし、部分的な養分・物理性環境の変化と果樹の根系発達に及ぼす効果の解析は十分になされていない。ここでは、土壤改良部位に部分的に増加したリンや窒素養分が再生した根系に及ぼす効果を明らかにするため、樹勢の低下したモモにリン資材としてリンと、リン含が高く窒素供給量が異なる堆肥（パーク堆肥、牛ふん堆肥）を用い、部分施用後2年間の細根特性値の変化を検討した。

【方法】
1)供試樹：茨城県つくば市の果樹研究所圃場（黒ボク土）に生育する14年生モモ‘あかつき’を用いた。
2)処理：1樹当たり主幹から1.7m離れて、直径30cm深さ40cmの坑を8か所掘り（深耕区）、各坑にリン320g（ヨウリン区）、モミガラ混合牛ふん堆肥（堆肥区）または鶏ふん混合パーク堆肥（パーク堆肥区）20Lを冬季〜春先に加え、土壤と混合して埋め戻した。2年目も同様に行った。3)根系特性値測定：処理1年、2年後の改良部位の再生根を10月に掘り取り、根径別に区分した。細根は画像解析ソフト Win Rhizo で根長を計測し、乾物重を測定した。

【結果及び考察】
1)モモの改良部位の根系は、1, 2年後のいずれも細根が乾物割合の大部分を占め、改良部位に細根のみが見られた坑は、1, 2年後とも約60%であった。
2)細根の特徴：処理1年後の根の重総数は、対照（深耕）に比べ、土壤改良資材の施用で2〜3倍の範囲にあり、ヨウリン区で有意に増加した。根長密度は、4〜5倍の範囲にあり、堆肥区とヨウリン区で有意に増加した。処理2年後の土壤改良資材の施用により、根重密度は2.4倍、根長密度は4.6倍の範囲にあり、いずれもパーク堆肥区と堆肥区で有意に増加した。処理1年後と2年後を比較すると、根重密度は1.2倍の範囲にあり堆肥区では有意に増加し、根長密度は1-2倍の範囲にあったが有意差はなかった。
3)有機物施用、リン資材、窒素供給量の有無による細根乾物重と細根長の関係について共分散分析を行ったところ、処理1年後の細根では、有機物施用の有無で有意差が示され、同じ細根乾物重であれば、有機物施用により細根長が約2倍増加し、この理由として土壤孔隙の増加によると考えられた。また、リン資材、窒素供給量の高い牛ふん堆肥の施用でも同様に増加した。処理1年後では、有機物施用の有無による有意差はなかったが、リン資材、窒素供給量の低い堆肥の施用では相違が続いた。さらに直径別の細根長分布を比較したところ、有機物施用により直径(0.4mm, 0.4〜0.8mm)の小さな細根長が有意に増加し、リン資材、窒素供給量の高い堆肥の施用で同様に直径0.0〜0.4mmの細根長が有意に増加することが示された。
処理2年後では、窒素供給量の高い堆肥の施用でのみ直径0.4〜0.8mmの細根長が有意に増加した。
4)土壤改良部位に伸長した根のうち直径0.8mm未満の根を側根とし、側根長、側根数を比較したところ、リンを含むヨウリン区、パーク堆肥区及び堆肥区で増加が示された。これらの結果は、土壤改良部位に含まれる高濃度のリンが、側根数を増加させるとともに側根の伸長を促進した結果、細根長が増加したと考えられる。また、堆肥施用による土壤孔隙の増加とともに、堆肥に由来する夏季の窒素供給も細根長増加を促進したと考えられる。
P-3

ナスおよびナス近縁種における根のカドミウム局在性（1）
レーザー-アブレーション ICP-MS を用いた主根と側根の金属元素の直接分析

森 伸介*1・馬場 浩司*1・豊田 健子*2・山口 紀子*1・荒尾 知人*1

(1. 農業環境技術研究所、2. 日本学術振興会特別研究員)

【背景および目的】食品中のカドミウム(Cd)の全国調査において、ナスは 7.3%がコーデックス委員会の提案する国際基準値 0.05mg kg⁻¹を超過しており、Cd 吸収抑制技術の開発が急がれている。ナスの台木のCd 吸収には、種間差が存在し、ナス近縁種のトル巴ムビガーを台木に用いたナス果実は、他の台木と比べて約 1/4 程度に低減できることが明らかになった。そこで本研究では、ナス（千両二号）とナス近縁種（トルバムビガー）における主根および側根の縦軸方向のCd 分布を明らかにすることを目的とした。

【試料および方法】トルバムビガー（Solanum torvum）は、初期生育速度が千両二号（Solanum melongena）より遅いため、千両二号より約 1 ヶ月前にパラライトに播種した。トルバムビガーは播種後、約 10 週間後、千両二号は播種後、約 5 週間後に水耕栽培に移植し、園芸処分ナス用培養液（下記）で 1 週間前培養し、Cd 吸収実験を行った。Cd は 0.09 μmol L⁻¹となるように培養液（500ml）に添加し、24 時間（長時間処理）あるいは 4 時間（短時間処理）吸収させた。レーザー-アブレーション ICP-MS（New Wave Reserch, UP-213・Micromass, PlatformICP）の測定処理後は根を純水で洗浄し、乾燥させたものを供した。千両二号（短時間処理）の主根長 8.9cm 側根長 8.7cm 長時間処理の主根長 8cm, 上位側根長 6.4cm, 下位側根長 4.8cm, トルバムビガー（短時間処理）の主根長 14.3cm 側根長 9.4cm 長時間処理の主根長 17.6cm, 上位側根長 7.5cm, 下位側根長 5.8cm の根先端から 0.8cm 間隔で根表面をレーザーを照射して、¹¹⁠⁴Cd および¹¹⁠²Cd のイオノン強度を測定し、¹¹⁠⁴Cd/¹¹⁠²Cd 比を計算することによりアブレート量の変動を補正した。

園芸処分ナス用培養液組成 (mmol L⁻¹) : 1.5 Ca(NO₃)₂・4H₂O, 3.4 KNO₃, 1.0 MgSO₄・7H₂O, 1.0 NH₄NO₃, 4.6×10⁻² H₂BO₃, 9.1×10⁻⁴ MnSO₄・5H₂O, 7.6×10⁻⁴ ZnSO₄・7H₂O, 3.1×10⁻⁴ CuSO₄・5H₂O, 1.0×10⁻⁴ NaMoO₄・2H₂O, 5.3×10⁻² FeSO₄・7H₂O

【結果および考察】実験時間中、¹¹⁠⁴Cd/¹¹⁠²Cd 比は千両二号およびトルバムビガーともに主根より側根で高く、Cd は主根・側根とも根の先端に分布した。一方、長時間処理における¹¹⁠⁴Cd/¹¹⁠²Cd 比の平均値は上位側根＞主根＞下位側根であった。

長時間処理における千両二号の上位側根では 3.2cm 付近で¹¹⁠⁴Cd/¹¹⁠²Cd 比が最も高く、ついて 5.6, 0.8, 4.8cm で高かったが、トルバムビガーの上位側根では 0.8cm 付近で最も高く、1.6-6.4cm は低かった。一方短時間処理では、千両二号、トルバムビガーの側根の先端付近で¹¹⁠⁴Cd/¹¹⁠²Cd 比が高かった。これらのことから、千両二号の上位側根では、根先端で吸収された Cd が根上端に移動する速度がトルバムビガーの上位側根よりも早いかが示唆された。下位側根では上位側根で見られたような傾向は認められなかった。

トルバムビガーの主根では 4.8cm 付近で¹¹⁠⁴Cd/¹¹⁠²Cd 比が最も高く、ついて 4.0, 0.8, 5.6cm で高が、6.4-17.2cm は低かった。千両二号の主根の¹¹⁠⁴Cd/¹¹⁠²Cd 比は、根の先端から根の上端までほぼ一様であった。これらのことから、トルバムビガーは根の先端に近い部位に Cd を蓄積し地上部への輸送を抑制している可能性が示唆された。
ナスおよびナス近縁種における根のカドミウム局在性（2）
—レーザー・アブルーションICP-MSを用いた根の
横断面の金属元素の直接分析—
○冨田（齋木）佐奈子1,2*・馬場浩司1・森伸介1・山口紀子1・荒尾知人1
（1農業環境技術研究所 2日本学術振興会特別研究員）
（*E-mail: helios02@niaes.affrc.go.jp）

【背景および目的】平成17年7月の第28回コーデックス委員会で野菜中カドミウム（Cd）濃度の国際基準値が0.05mg/kgに合意された。なぜかナスの約7%がこの値を超えがため、ナスのCd吸収抑制技術の開発が急がれている。最近、台木にナス近縁種（トウバミピング）を使用することにより、ナス（千両）果実のCd濃度を1/4以下に低減できることが明らかとなった（竹田ほか、投稿中）。そこで本研究は、トウバミピング根の横断面のCd分布を調べて、地上部へのCd移行に関与する根組織を明らかにすることを目的とする。

【試料および方法】ナス近縁種としてトウバミピングを用いた。発芽促進としてジベレリン（100mgL-1，24h）浸漬処理後にパラライトに播種し、10週間後に水耕装置（協和、ホームハイポニカ303）に移植した。栽培はガラス温室（温度25－28℃）内で行い、水耕培養装置は封入処方ナス用に従った。前栽培期間中の灌水にはイオン交換水を使用し、播種後6週間後以降には水耕培養を濃度1/2に希釈して1週間に1回程度の頻度で水耕装置に投与した。Cd処理は、播種後14週間後（本葉4－5枚展開期）にCd濃度が0.9μmolL1となるように塩化カドミウムを水耕培養に添加し、人工光室内で24時間行った。根の横断切片は、主根および側根上位、中位、下位で分岐した側根について、先端から300μm、4、8、12、16、20cmの距離で作成した。切片は、垂直スライサー（ジャスコエンジニアリング、HS-1）を用いて、厚さ200μmとなるように切り出した。凍結乾燥後、レーザー・アブルーションICP-MS（New Wave Research, UP-213・Micromass, PlatformICP）により114Cdおよび13Cイオン強度を測定し、114Cd/13C比を計算することによりアプレート量の変動を補正した。

【結果および考察】①Cd局在性：114Cd/13C比の横断面分布は、主根および側根のいずれも根端からの距離4あるいは8cmにおける内皮近傍の値が高かった（図1）。12cm以上では、中心柱の114Cd/13C比が低く、外皮の114Cd/13C比が高かった。②根端からの距離との関係：内皮近傍の114Cd/13C比は、主根と側根のいずれも根端からの距離4あるいは8cmにおける値が高かった（表1）。以上から、トウバミピング根部において、根端付近および中心柱の木部導管部にはCdが蓄積せず、根端からの距離4あるいは8cm付近の内皮近傍へのCd局在性が認められた。

| 表1 内皮近傍の114Cd/13C比 |
|-----------------|-----------|-----------|
| 根端からの距離 | 中位 | 下位 | 主根 |
| 20 cm | 0.4 | - | - |
| 16 cm | 0.3 | - | 0.1 |
| 12 cm | 0.3 | - | 0.1 |
| 8 cm | 1.4 | 0.7 | 0.2 |
| 4 cm | 0.1 | 9.8 | 0.7 |
| 300 μm | 0.2 | 0.2 | 0.1 |

図1 根の横断面におけるCd分布
根端からの距離：下から順に300μm、4、8、12、16、20cm。
主根と側根中の114Cd/13C比の最大値に対する相対値%。
移植栽培を用いた根域制御と堆肥施用によるホウレンソウのカドミウム低減効果

菊地 直
独立行政法人 農業・食品産業技術総合研究機構 野菜茶業研究所
（連絡先：〒305-8666 茨城県つくば市観音台3-1-1 029-838-8903）

食品中のカドミウム（Cd）濃度について、コーデックス委員会で新たな基準値が検討され、野菜では0.05mg kg⁻¹（葉菜類 0.2mg kg⁻¹、新鮮重あたりの濃度）という基準値が採択された。野菜については、これまで国内におけるCd濃度基準が定められていなかったこともあり、Cd吸収に関する研究は稀少といえる状態にある。本報告では、Cd濃度が他の野菜に比べて高くならやすい傾向を示すホウレンソウにおいて、堆肥施用によるCd濃度抑制効果を明らかにするとともに、客土施行圃場等における污染土壌への根の生育を抑制するため、ベーパーポット苗による移植栽培が根系分布へ及ぼす影響を調査し、移植栽培によるCd吸収抑制栽培の可能性について検討した。

【材料および方法】
堆肥施用試験：1/5000aポットに土壌（3kg）を充填し、ホウレンソウ種子を播種し（1ポットあたり10粒播種、発芽後2個体に調整）、適温灌水しながら人工気象室内（気温20℃、湿度65%、日長12時間）で栽培を行い、最大葉長25cmとなった時点で地上部を収穫した（栽培期間約40日）。土壌は黒ボク土壌（0.1M-HCl抽出Cd0.11mg/kg）と混合土壌（黒ボク土壌と高Cd土壌を3:1の割合で混合しCd濃度を0.95mg/kgに調整）を用いた（高Cd土壌：黄色レギン土、Cd5.75mg/kg）。それぞれ無堆肥化と堆肥施用区（牛ふん、豚ふん、鶏ふん、80g/ポット）を設け、全処理区とも化成肥料（8-8-8、1gN/ポット相当量）を土壌に混合施した。

根系分布比較試験：黒ボク土壌を透明アクリル容器（H40cm×W25cm×D3cm）に充填し、深さ20cmまでの土壌に化成肥料（4g）と豚ふん堆肥（20g）を混合施した。直ちに栽植区と、ベーパーポット苗（約2週間育苗）を移植した区を設け、人工気象室で栽培し、観察面に現れた根の分布を調査した。

【結果および考察】
ホウレンソウ地上部のCd濃度は、黒ボク土壌、混合土壌ともに堆肥の施用によって低下する傾向が認められ、特に豚ふん堆肥の施用効果が高かった。どの処理区においても、栽培前と比べ栽培後の土壌pHは低下したが、豚ふん堆肥、鶏ふん堆肥を施用した区では、無堆肥化と比べて比較的高く維持される傾向がみられた。混合土壌における0.01M-HCl抽出土壌Cdは、無堆肥区と牛ふん堆肥施用区では栽培前の方が値が高くなったのに対し、豚ふん堆肥と鶏ふん堆肥を施用した区では顕著な増加はみられなかった。HCl抽出土壌Cdと土壌pHの相関が高かったことから、堆肥施用によるホウレンソウCd抑制効果は、土壌pHの維持によるHCl抽出土壌Cd濃度抑制によるものと推定されたが、牛ふん堆肥による効果はこれには当てはまらず、HCl抽出土壌CdとホウレンソウCdとの相関も認められなかったことから、土壌pH以外の要因が関与している可能性も示唆された。

根箱栽培試験におけるホウレンソウの根系分布は、直詰栽培と移植栽培で異なり、直詰栽培では深さ20cm以下の層にも根が発達し、全体の4割以上を占めたのに対し、移植栽培では20cm以下の根の割合が少なく、根系の発達が抑制されていたことから、ホウレンソウ栽培において移植栽培の導入により、客土や天返し対策が行われた圃場におけるカドミウムリスクを低減できる可能性が示唆された。
塩ストレス下におけるイネ根系の可塑性発現および
糖代謝関連遺伝子等の発現
豊福 恭子・小川 敦史・川島 長治
秋田県立大学 生物資源科学部
（連絡先：kyotoyo@akita-pu.ac.jp）

作物の根系は、土壤環境変化に適応してその構造形態を大きく変化させる。その性質を「可塑性」と呼ぶ。作物はこの可塑性によって、ある程度の土壤ストレス環境下においても根系を拡大する事により養分の吸収を維持していると考えられている。根系の拡大には主軸根からの側根の発生・伸長が大きく寄与しており、このことが可塑性発現の大なる要因となっている。

根系の可塑性の実態を観察する目的で、0, 0.1, 0.2, 0.5 M の塩ストレス条件下でイネを6週間栽培し、経時的に種子根長・総根長・総表面積・側根数等を調査した。いずれも時間の経過およびストレス強度の増加について抑制されたが、側根1本あたりの表面積は維持される傾向が示された。抑制された種子根の伸長を相補する目的で側根形成に変化が見られたものと推測された。

根系は非光合成器官であることから、側根の形成・伸長時には地上部からの光合成同化産物などの物質の転流・分配が必要であると推測される。糖輸送や糖代謝関連遺伝子（スクローストランススポーター、インペルターゼ、スクロースシナターゼ等）の根系内での発現をみることで、イネの側根形成時の物質の移動や利用を推測した。根端・側根根原形成部位・地上部をそれぞれサンプリングし、組織中の total RNA を抽出して cDNA を合成した。PCR 解析の結果、0.2 M の低塩ストレス時に、ストレスに応答してスクロースの分解・合成・輸送が盛んにおこなわれることが明らかになった。ストレス時の浸透圧調節ひいては植物体生存の維持にこれらの遺伝子が重要な役割を担っていることが示唆された。

また、シロイヌナズナから単離された側根根原形成に関わると報告されている遺伝子（Lateral Root Primordia 1; LRP1）の部分配列をイネから単離し（OsLRP1とする）、同様に解析をおこなった。また in situ hybridization をおこない組織特異的な発現を探索した。その結果、側根根原・根端の伸長領域と思われる部位・登熟中種子の胚乳部分などにシグナルが確認され、イネにおいては側根根原の形成のみならず、細胞分裂の盛んな組織で発現し分化・発達に関与している事が示唆された。

さらに、イネの根端および側根形成部位の組織を用いて cDNA ライブラリーを作製した。側根形成に関わる遺伝子の探求を目的として現在シークエンスを進めており、その結果の一部も報告したい。
側根発達におけるオーキシン分配の影響
鈴木雄裕・小川教史・我彦広悦
秋田県立大学 生物資源科学部
（連絡先　小川教史　E-mail: 1111111@akita-pu.ac.jp）

植物は環境の変化にあわせてその生長を大きく変えることが良く知られている。これらはオーキシンなどの植物ホルモンによって調節されており、側根の形成においてはオーキシンの極性輸送が重要である。極性輸送はナフチルチラミン酸（NPA）や植物력発酵伝子AK-6bの発現によって阻害され、植物の形態は変化する。本研究では、NPAを用いてオーキシン輸送を阻害した植物体や、オーキシン関連の遺伝子発現を調節する形質転換植物において、in situでの抗体染色やGUSアッセイなどにより植物体内でのオーキシン局在性の変化を調査し、オーキシンの分配が根系形成に与える影響を明らかにすることができた。　

【材料と方法】
実験1：NPAによる根系形態の変化の観察　
供試材料としてイネ（品種：あきたこまち）を用いた。28℃暗室条件で72時間処理させ、28℃、湿度70％、12時間の間隔の管理で2週間培養した。水耕栽培時に、水耕液中にNPAを0.01μM、1μM、10μMとなるように加えた。FAAで固定後、根長および側根数を測定した。また、1-ethyl-3carbodiimide hydrochloride、FAAの順に処理後、エタノールおよびエタノールで脱水し、定型に従いバラフィン切片を作製し、抗IAA抗体（Pytotec）を用いてオーキシンの局在性の検出を行った。

実験2：イネへの植物力発酵伝子とオーキシンレポーター遺伝子の導入　
供試材料としてイネ（品種：千葉風）を用いた。形質転換を行うため、(1)CMV 35S::AK-6b、(2)キメラ型GV5転写因子遺伝子（デキサメタゾン・Dex）存在下でのみProUASの転写因子となる→6xUAS::AK-6b、(3)オーキシンレポーター配列ProD5::GUSのコントラクトの作成を行った。クローニング終了後、イネのカルスにアプロックステリウムを介してDNAを感染させ、スクリーニングを経て再分化し、転換体を作出した。

【結果と考察】
NPA処理により、植物体の形態は濃厚度が高いほど生長が阻害された。側根数・総根長共に大きく減少し、地上部および根系で重力屈性を失っていた。10μM処理区では根が褐色に着色し、種子根の肥大が確認された。これらの形態変化から、オーキシンの極性輸送がNPAによって阻害され、根での求頂性輸送が止まる事による総根長の減少、求基性輸送の減少による側根数の減少が生じたと考えられた。着色と肥大の原因は定かではないが、輸送が阻害される事でのオーキシン蓄積が原因ではないかと考えられた。

形質転換体の(2)に関しては形質転換が終了し、植物体として成育中である。(1)、(3)については現在クローニングを行っている中である。いずれのコントラクトでも次世代の種子を得てから、ストレスをかけるなどの実験を組み、オーキシンの分配がどう変化するか観察する予定である。

NPA処理をした種子根基部では側根組織の細胞が細かく密着した状態に変化していた。これはIAAが基部で蓄積した結果、そこでの細胞分裂が促進され細胞が増加したものと考えられた。また、10μM処理区では側根基部の形状が変化していた。IAA抗体を用いIAAの局在を検出することが可能であった。
P-8 浸透圧ストレス条件下でのアスコルビン酸代謝関連物質の投与がトウモロコシ幼植物体の生長に与える影響
佐藤大吾・小川敦史
秋田県立大学 生物資源科学部
（連絡先 小川敦史 E-mail: 11111111@akita-pu.ac.jp）
ビタミンC（アスコルビン酸）は近年注目を集めている栄養素の1つであり、その効果はアスコルビン酸が持つ抗酸化力によって人間だけでなく、ストレス条件下での植物の生育にも貢献していることが明らかにされつつある。しかし、アスコルビン酸やその代謝関連物質がどのようにしてストレス耐性に関与しているかに関する知見はまだ十分ではない。さらに近年の動物研究では、アスコルビン酸に加えその誘導体による効果が注目されているが、それらがストレス条件下での植物の生長に与える影響については明らかになっていない。本研究ではアスコルビン酸代謝関連物質がトウモロコシ幼植物体においてストレス条件下での生長に与える影響を検討した。
【材料および方法】
供試材料としてトウモロコシ（品種：ホワイトポップ）を用い、水耕栽培を行った。栽培開始時に、ポリエチレンテレフタール酸6,000を水耕液1L中に100g溶解し、水耕液の水溶性ビタミンを0.21MPaに調節した。また同時に、アスコルビン酸、DHA、およびF3種類のアスコルビン酸誘導体を水耕液中に溶解し、それぞれ0.1mMおよび1mMになるように調節した。7日間水耕栽培した後サンプリングを行い、地上部および地下部の新鮮重および乾燥重、草丈、総根長、側根数を測定した。またLisora（2004）の手法を用いて、根系におけるin situでのアスコルビン酸の局在性を検出した。
【結果および考察】
浸透圧ストレスを処理した場合、対照区と比較して地上部の乾物重は50%であった。しかし同時にアスコルビン酸0.1mMを添加した場合、ストレス処理による生育阻害はほとんど認められなかった。アスコルビン酸0.1mMの他、DHA 1mM、アスコルビン酸グルコシド0.1mMを処理した場合にも、地上部生育において同様にストレスに対する抵抗性が認められた。総根長を比較すると、ストレス処理区では生育が対照区の58%に阻害された。同時にアスコルビン酸0.1mMを添加した場合、総根長は対照区の53%となり、ストレスに対する抵抗性は認められなかった。しかし、アスコルビン酸0.1mM処理区において側根数はストレス条件下でも維持される傾向にあった。また、アスコルビン酸グルコシド0.1mMを添加した場合、ストレス条件下において総根長は対照区の62%であり、全てストレス処理区の中で最もストレス抵抗性を示した。また、各処理区におけるアスコルビン酸の局在性の違いが認められた。本実験ではアスコルビン酸代謝関連物質の投与により特に地上部でのストレスに対する抵抗性が認められた。これは、アスコルビン酸代謝関連物質の投与により、アスコルビン酸－グルタチオン回路での活性酸素の還元が効率よく行われ、その結果生育が維持されたものによると考えられた。

アスコルビン酸代謝系

![アスコルビン酸代謝系経路図](image)

-186-
P-9 窒素栄養がインにおける^{15}N・^{13}C 自然存在比の体内分布におよぼす影響

妹尾俊吾*・児二郎
京都工芸繊維大学大学院工芸科学研究科
(Email:m7611017@edu.kit.ac.jp)

【目的】
土壌窒素を吸収する植物の葉のδ^{15}N値は根と比較して通常3-7％高いことが報告されている。また器官間のδ^{15}N値の変動については、器官特有の窒素同化パターンの違いと窒素の再転流が主要因だと考えられている。再転流窒素に大きく依存するシンク器官では、δ^{15}N値が他の部位と比較して最も低いことが報告されている。シンクのδ^{15}N値は再転流窒素の蓄積速度やその由来を色濃く反映したものであり、シンクの物質集積能を解析する上で有用な指標であると考えられる。しかし現在のところ、δ^{15}N値の植物体内の変動に関するデータはきわめて少ない。本研究ではシンク器官におけるδ^{15}Nの特徴を明らかにするため、まず幼穂形成期のイン体内におけるδ^{15}N値とδ^{13}C値の分布を調べた。

【材料と方法】
水耕栽培したイン(日本晴)を用いた。硝酸区とアンモニア区を設け、それぞれに窒素濃度1mM区と5mM区を設けた。培養液はホーグランド10倍希釈液を用い、アンモニア区では窒素源をアンモニウム化合物に置き換えた。移植から1ヶ月後(幼穂形成期、8月1日)にサンプリングし、上位葉(抽出中の葉身)、葉(成熟+下位葉葉身)、葉鞘、茎、基部(稈基部 2cm)、根、分けつに切り分けて乾燥させた。安定同位体質量分析計(Finnigan MAT delta-S)を用いてδ^{15}N値とδ^{13}C値を求めた。

【結果と考察】
器官間のδ^{15}N値の変動が硝酸区、アンモニア区ともに認められた。硝酸1mM区では葉のδ^{15}N値が最も高く(−2.50%)で上位葉＞分けつ＞根＞葉鞘＞稈基部(−5.60%)の順であった。硝酸5mM区でもほぼ同様の傾向が認められた。いっぽうアンモニア1mM区では根で最もδ^{15}N値が高く(−7.70%)＝分けつ＞上位葉＝基部＞葉鞘＞葉(−9.37%)の順であった。アンモニア5mM区でもほぼ同様であった。器官間の最大変位幅は、硝酸区の1mM、5mMでそれぞれ3.10%と3.54%、アンモニア区でそれぞれ1.67%と2.31%となり、硝酸区がアンモニア区を上回り、また各区ともに前窒素濃度が高いほど変位幅が拡大した。硝酸区では葉・葉鞘で高く、根で低い傾向であったが、稈・基部では根よりも低い値を示した。これは稈では硝酸還元が不活発なるため、再転流窒素に依存する程度が高いことが原因だと推測される。一方アンモニア区では両濃度ともに葉で最も低くなった。これは成熟葉・下位葉での活発なタンパク質の代謝回転にともなう窒素の流入・流出によるものと推察された。δ^{13}C値の変動は硝酸・アンモニア両区ともにソース器官である葉(−29.7-30.2%)で最も低く、シンクである根(−28.6-28.7%)、基部(−28.6-29.4%)または稈(−28.6-29.4%)で最も高くなった。今後、成熟期のサンプルの解析も含めてさらに検討を加える必要がある。
P-10
水ストレスがイネ器官間における
13C 自然存在比の分布に及ぼす影響

狩野 麻奈*, 大魚 義明**, 三重 **, 二郎 ***, 北野 英己**, 山内 章***

(*) 名古屋大学大学院生命農学研究科, **) 京都工芸繊維大学, ***) 名古屋大学生物機能開発利用研究センター

(連絡先: ayama@agr.nagoya-u.ac.jp)

植物の生長を規定する大きな要因に水がある。植物の乾物生産量は、水消費量と水利用効率の積として捉えることができる。水利用効率は、とくに軽度の水ストレス条件下で高くなる場合があることが知られている。

13C 自然存在比は、植物の水利用効率に関する指標として広く利用されている。一方、13C 自然存在比と耐旱性の関係については明らかにされていない。そこで本研究では、耐旱性の異なるイネ品種の水ストレスに対する生育反応と 13C 自然存在比との関係を調べた。その際の、とくに水ストレス強度と 13C 自然存在比との関係にも注目した。また一般的に、器官間の 13C 自然存在比を比べると、ソース葉で 13C 濃度が低く、根や新葉のようなシンクで 13C 濃度が高くなることが知られている。そこで、イネ器官間の 13C 自然存在比を調べることで、水ストレスが植物体内の物質分配に与える影響を評価しようとした。

【材料と方法】

Line source sprinkler装置を設置し、土壌乾燥ストレス勾配を発生させたピニールハウス内の圃場に、日本晴（ジャポニカ）と Kasalath（インディカ）の 25日齢の幼苗を、ストレス勾配の方向に移植し、70日間生育させた。生育期間中、持続供給光合成蒸散測定装置（LI-6400）を用いて、光合成蒸散速度、気孔開度を測定した。2006年9月4日に地上部および根系をサンプリングした。地上部は穂・葉・茎葉部の基部から5cmの部位、それ以外の茎葉部に分けた後、液体窒素に浸せきした後、70℃にて乾燥機で2日間乾燥させた。根系については、水で土壌をよく洗い流し、地上部と同様に乾燥させた。乾燥後乾物重を測定し、測定後サンプルを粉末し、各器官の 13C 自然存在比を質量分析計（Thermo Fisher Scientific社）で求めた。

【結果と考察】

実験圃場では、土壌含水率が10％から50％の範囲で勾配が形成されていた。土壌含水率が低い、乾燥ストレス条件下での地上部乾物生産は、Kasalath が日本晴を大きく上回っていたことによると、Kasalathの方が日本晴と比較して耐旱性が高いと考えられる。土壌含水率が50％付近の湿潤条件下においては、日本晴、Kasalathともに、器官間に、13C 濃度の大きな差がみられなかった。このことから、両品種とも植物体内における同化産物の転流・分配・代謝にともなう同位体分別の程度に差がないと考えられる。また、Kasalathの13C 濃度は日本晴よりも全体的に低いことから、Kasalathの方が気孔開度も大きく、葉内 CO2濃度も高くなったことが予想され、実際に測定した気孔開度や光合成速度／蒸散速度からみた水利用効率の反応とも一致した。一方、土壌含水率が15％前後の強い乾燥ストレス条件下においては、日本晴、Kasalathともに、13C 濃度は湿潤区と比較して各器官で大きく増加した。このことから、両品種ともに、乾燥ストレスにより気孔開度が急激に減少し、葉内 CO2濃度が低下していたと考えられ、湿潤条件下同様に、実際に測定した気孔開度や水利用効率の反応とも一致した。また、Kasalath では、穂の13C 濃度が他の器官の13C 濃度と大きく変わった。このことより、乾燥ストレスにより、穂葉供給される同化炭素が減少し、再転流炭素が増加したことが示唆される。さらに、乾燥ストレス条件下において、成育した土壌の含水率が数％程度異なるだけで、個体の13C 濃度が大きく異なることがわかった。強い乾燥ストレス条件下では、地上部乾物生産、水利用効率ともに、土壌水分間で反応に大きな差が見られないことから、13C 自然存在比は耐旱性を評価する有効な指標になりうる可能性を示唆している。現在、反復数や測定個体を増やして解析を進めているところである。
作業の成長や収量は、根系の機能と密接に関係しており、発育に伴い変化する。さらに、個体の根系は、発生時期の異なる根によって構成されており、それぞれの根は加齢によって機能が変化する。そのような機能の中で、収量に最も密接に関連するものとされる、気孔開度の影響がある。根系の加齢に伴ってその機能（水通水性）が低下すると、葉半分に水が供給されず、気孔開度が減少し、光合成速度が低下すると考えられる。そこで、本研究では、個体発育に伴う根の発生過程を詳細に追い、さらに、光合成に関わる気孔伝導度の推移と根系発育との関係について明らかにすることを目的とした。

【材料と方法】
実験 1: 日本晴/Kasalath 彩色体配合置換系統群 54 系統、ならびにその親品種である日本晴、Kasalath を供試した。名古屋大学付属農場内の水田で栽培し、2 週間ごとに最上位展開葉の 1 枚の葉の気孔抵抗を測定した。出穂前後数日に伴う気孔抵抗の上昇が日本晴と比較し、明らかに大きさの系統と小ささの系統を選び、円筒メタリック法により、成熟期に根系を採取した。採取した根系を、根の外部形態（色と組織の崩壊程度）から、若木、成熟した根、古い根に分類し、老化程度を定量化した。日本晴と比較し、出穂期以降の気孔抵抗の上昇が大きく、かつ根系の老化程度が低かった系統 42、系統 48、また、出穂期以降の気孔抵抗の上昇が大きく、かつ根系の老化程度が高かった系統 47、系統 49 を選抜し、以下の実験に用いた。実験 2：実験 1 で選抜した系統と日本晴を供試した。長さ 100 cm、径 7.4 cm の半割した粒化ビルピンに透明なアクリル板を接着し、塩質砂を約 15 度に傾け、金属製の枠に収納した。枠は、光が根に当たらないようにするとともに急激な温度変化を抑制するために、発熱スチールに囲った。アクリル板上に現れた節根を、3 月ごとに、同伸した葉毎に区別できるように、色の異なる油性ペンでマークをしていた。同時に、気孔抵抗を 3 月ごとに測定した。成熟期に、アクリル板上のマークと対応できるように色の異なる絹を根に絣をつけ、土壌を洗い流し、根系を採取した。実験 3：実験 1 で選抜した系統と日本晴を Kasalath を供試した。1/5000 ワグネルボットで栽培し、1 週間ごとに気孔抵抗を測定した。
実験 4：実験 1 で選抜した系統、それぞれの系統と同じ置換部位を持つ系統、ならびに日本晴を供試した。名古屋大学付属農場の水田で栽培し、1 週間ごとに気孔抵抗を測定した。

【結果と考察】実験 2 より、出穂期以降の発生した根の割合は、系統 47 が最も多く、次いで、系統 42 と日本晴が同程度、系統 48、系統 49 という順番であった。次に、出穂期以降の気孔抵抗は、出穂後 40 日目頃まで、系統 47 では最も低く維持されている。次いで、日本晴、系統 42 が同程度であったのに対し、系統 48、系統 49 では、出穂後 35 日目頃から急激に上昇した。この結果は、出穂期以降に発生した根の割合が多い系統が、より半半まで気孔抵抗を低く維持したことを示唆している。そこで、出穂後 40 日目の気孔抵抗と各時期に発生した根の割合との間の関係を調べたところ、出穂期以降に発生した根の割合と出穂後 40 日目の気孔抵抗との間に有意な負の相関関係が認められた。現在、各期に発生した節根について、発生部位や老化程度について解析中である。さらに、実験 3 において、出穂期以降に発生した節根の数と出穂後 30 日目の気孔抵抗との間に、有意な負の相関関係が認められた。
以上の結果から、根系全体の老化程度を規定する主要因の一つは、出穂期以降に発生する分げから発生する節根の割合であり、その割合が高まることが根系全体の水通水性の維持に貢献し、地上部に十分に水を供給し、気孔開度の維持に重要な役割を果たしていると考えることができる。
さらに、実験 4 より、系統 48、系統 49 と同じ置換部位を持つ系統 50 で、出穂期以降の気孔抵抗の急激な上昇が認められ、系統 47 と同じ置換部位を持つ系統 12、系統 47 で、出穂期以降の気孔抵抗の上昇が低く抑えられていた。この結果から、染色体の共通の置換部位が、個体発育に伴う根の発生に関わっている可能性がある。
本研究で供試した置換系統群は、農林水産省のイネジェノム研究プロジェクトで開発されたもので、農業生物資源研究所イネジェノムリソースセンターから分譲を受けた。
P-12

株元からホモプシス根腐病菌汚染土壤までの距離が
キュウリの萎凋症状と根系の発達に与える影響の解析

永坂 厚・中嶋美幸・門田育生
東北農業研究センター
（nagasaki_atsumi@affrc.go.jp）

ホモプシス根腐病はウリ科作物に引き起こされる土壌伝染性の病害である。病原菌
*Phomopsis sclerotioides*は根腐感染症を引き起こす。このため、罹病した植物体
は激しい萎凋症状を示す。一方、既発生圃場において、畦立て後に畦内の土壌を消毒してから
キュウリを栽培すると、根が畦外の汚染土壤まで伸長して感染を受けても、萎凋症状が抑制され
る。病原菌の感染が株元から離れた部位に起こることが、萎凋症状の発症や根系の発達に与える
影響を調査するために、積層土壤カラムを用いた接種試験を試みた。

まず、積層土壤カラム内での根の成長について調査した。高さ 5cm、直径 11.5cm の塩ビパイ
ブに未汚染土を詰めた土壤カラムを 6 個積層（各層をカラム上部から L1～L6 とする）し、全高
30cm の積層土壤カラムとした。この積層土壤カラムに播種 15 日後のキュウリ苗を移植した。移植
約 25 日後には、根は積層土壤カラムの最も下段まで伸長した。

次に、積層土壤カラム上面から汚染部位までの深さが、萎凋症状の発症に与える影響を調査し
た。前述の塩ビパイプに汚染土（病原菌の菌体懸濁液を混和した土）を詰めた汚染土壤カラム、あるいは
未汚染土を詰めた未汚染土壤カラムを 6 個積層し、カラム上面から汚染部位までの深さ（DIS）
が異なる全高 30cm の積層土壤カラムを作成し、それぞれを試験区とした。対照として、未汚染
土壤カラムを 6 個積層したもの（健全区）を作成した。試験区及び健全区の積層土壤カラムの上
面にキュウリ苗を移植した後、104 日間にわたり、萎凋症状の発症程度の推移を観察した。その
結果、DIS 6cm（L1～L6 が汚染土）では、移植 21 日後から一部の葉が萎れた個体が現れ、40 日後
にはすべての個体が萎凋した。また、DIS 5cm（L2～L6 が汚染土）では、DIS 0cm と比較し
て発症が 12～26 日ほど、DIS10cm（L3～L6 が汚染土）では 21 日ほど遅延した。DIS 15cm（L4～
L6 が汚染土）、DIS20cm（L5～L6 が汚染土）、DIS25cm（L6 が汚染土）ではそれぞれ移植 78～86
日後、82～93 日後、97 日後から発症したが、その程度は軽かった。

次に、各区における根の発病や生育について調査した。移植後 106 日後の積層土壤カラムを層
別に分割し、内部の根の発病程度や乾燥重量を調査した。その結果、いずれの試験区でも、汚染
土壤カラムの層（汚染層）内の根は激しく発病していた。一方、未汚染土壤カラムの層（未汚染
層）内の根にも発病が現れ、その程度は、汚染層から離れた層ほど低くなる傾向が見られた。
また、根の乾燥重量を健全区と比較すると、汚染層では低下していた。一方、上面から汚染層ま
での間に未汚染層がある区では、未汚染層内側の根が乾燥している傾向が見られた。

これらの結果から、病原菌の感染が株元から離れた部位に起こった場合は、1）根の未汚染部分
の機能は維持されているために萎凋症状が抑制される、2）病原体の組織内増殖等によって発病部位
が拡大する 3）感染を受けた部位の根の量は低下するが、株元側の根の量は逆に増加することが
示された。

引用文献：
1) 岩田康哉、勝部和則、塚塚修一（2006）植物病報 72: 56(講要)
耐湿性の異なるコムギ品種間の
過湿条件下での根系発育と収量の比較

岡田 友梨絵1・吉田 朋史2・林 恵理子1・藤井 潔2・辻 孝子2・山内 章1

（1. 名古屋大学大学院生命農学研究科，2. 愛知県農業総合試験場）

（*連絡先：ayama@agr.nagoya-u.ac.jp）

これまでの著者らの研究において、コムギ品種間には耐湿性の程度の差異が存在し、たとえば、イワ
イノダイチは農林 61 号よりも地下水位の影響を受けにくく（吉田ら，2004）、UNICULM は耐湿性が特異
的に小さい品種であることがわかっている（吉田ら，2006）。この耐湿性には、過湿土壌条件下での根系
の発育や機能が大きく関わっていると考えられるが、これらの耐湿性の異なるコムギ品種間での根
系の発育と耐湿性との関係は十分に明らかにしていないので、本研究ではその点について詳しく検
討しようとした。

【材料と方法】愛知県農業総合試験場の耐湿性検定箇所で栽培したコムギ品種 117 系統のうち、林ら
（2007）が耐湿性を評価した、イワイノダイチ（耐湿性強）、はつほこさぎ（やや強）、農林 61 号（耐湿性
の評価の基準とした）、Chinese Spring（弱）、UNICULM（極弱）、に、シロガネコムギ（小林、2004）、
ET-2（AI 耐性）、ES-8（AI 感受性（Delhaize et al, 1993））を加えた 8 品種を本実験の対象とし
た。1区 1.2m²、条間 40cm、播幅 20cm で条播した（2006 年 12 月 4、5 日）。2007 年 4 月 9 日から 5
月 30 日までの 51 日間、地下水位 5cm を目標とした土壌過湿処理を行った。出穂期前に小雨後、気孔抵抗・
蒸散速度・葉身 SPAD 値を測定した。成熟期には、地上部を収穫し、わら重、収量ならびに収量構成要
素を調査した。また、円筒モノリス法によって地表面から 5cm ごとの層別に、深さ 20cm までの根系を採
取した。

【結果と考察】過湿処理により収量の減少がみられたが、その減少の程度に品種間差異が認められた。
収量構成要素をみると、収量の減少に強く影響を及ぼす要因は整粒数・整粒比率であった。過湿処理
により生育期間中の気孔抵抗の上昇する時期が早まり、また上昇の時期と程度に品種間差異がみられ
た。また、収量・収量構成要素と気孔反応の関係をみると、収量、整粒数、整粒比率、千粒重、SPAD 値
は、気孔抵抗との間に負の相関を示した。さらに物性を選びたるの節根数と気孔抵抗にも、負の相関関係
が認められた。土壌の層別の根長密度は、多くの品種で、過湿処理により地表面に近い層で増加し、
深層で減少する傾向がみられた。また耐湿性が弱いとされる UNICULM では耐湿性が強いとされる品
種より、深層での根長密度の低下程度が大きくあたった。これらのこととは、過湿ストレスによりコムギ
の根系発育がに舌土壌深層で抑制され、気孔開度・葉緑素含量が低下し、光合成速度の低下を介して
コムギの登熟を妨げ、収量の減少をもたらすという関係が存在することを示唆している。一方で耐湿
性が強いと判断されている種類イワイノダイチが過湿処理により、他の品種より根系・通気組織をより発
達させることができている。このことは根系機能の維持・発達が耐湿性の獲得において重要であるこ
とを示唆している。

現在、過湿処理と窒素施肥レベルの根系発育と機能の及ばず相互作用について検討を進めている。

【引用文献】小林ら、2004、日作紀 73: 300-308；林ら、2007、東海作物研究 137: 18；吉田ら、2004 育種学
P-14 コムギとミズタカモジの雑種第一代の耐温性と根の特徴

小柳敷史１・川口健太郎１・高田兼則２・笹沼恒男３
（作物研１・近農研２・横浜市大３、連絡先：oyanagi@affrc.go.jp）

我が国ではコムギは水田転換畑で栽培されることが多いため、土壌の過湿による湿害の発生が問題となる。耐温性の高いコムギ品種を育成するためには交配母本となる遺伝資源が欠かせない。耐温性に優れるコムギは在来種を含めて未だに見いだされていない。カモジグサの仲間であるミズタカモジは、田の畦畔など水辺に自生するコムギの近縁種であり耐温性が極めて高い。ミズタカモジは通常、コムギとは交雑しないが、人工交配して幼胚を培養すると雑種第一代が得られる。この雑種第一代は不稔であるが、多年生であるために株分けにより増殖させることができる。

2006年5月に近畿国民農業研究センター（福山市）において、コムギ農林61号を父、ミズタカモジを母として人工交配し、12～14日に幼胚を取り出し、1/2MS培地で培養した。再分化個体は2葉展開以降に土を詰めたポットに移植し生育させた。2007年8月16日に作物研究所（つくば市）において、地上部を高さ約5cmのところで切除し、株分けにより6株に増殖させて本実験に用いた。このうちの3株を水田土壌を充填したポット（直径約10cm）に移植し、残りの3株を対照の園芸培土（クレハ製）を詰めたポットに移植した。また、コムギは8月22日に同様のポットに3粒づつ播種した。24℃、自然日長のガラス温室で生育させ、9月4日に水田土壌のポットのみ湛水して水位を地上約3cmに保ち、2週間後に地上部と根を調査した。

観察では、ミズタカモジの生育は湛水と対照の間で顕著な違いは見られなかったが、雑種第一代は湛水で下位葉に黄化が見られた。また、コムギは湛水で全体が黄化し、生育量も少なかった。地上部乾物重及び根乾物重からみて耐温性はミズタカモジ＞雑種第一代＞コムギの順であった。また、雑種第一代は根長／根重比が大きく、根が細い傾向にあった（第1表）。なお、湛水した雑種第一代の根には黒化などミズタカモジには見られない過湿による障害が観察された。

第1表 ミズタカモジ、雑種第一代、コムギの地上部重、根重及び根長／根重比

<table>
<thead>
<tr>
<th></th>
<th>地上部乾物重（g）</th>
<th>根重（g）</th>
<th>根長／根重比（m/g）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>湧水</td>
<td>対照（％）</td>
<td>湧水</td>
</tr>
<tr>
<td>ミズタカモジ</td>
<td>7.60</td>
<td>8.66（88）</td>
<td>0.560</td>
</tr>
<tr>
<td>雑種第一代</td>
<td>5.09</td>
<td>7.17（71）</td>
<td>0.310</td>
</tr>
<tr>
<td>コムギ（3個体）</td>
<td>0.40</td>
<td>1.45（28）</td>
<td>0.054</td>
</tr>
</tbody>
</table>

ミズタカモジは三浦勲一博士（京大）より分譲いただいたものである。
セイヨウミヤコグサ毛状根培養系を利用した
アーバスキュラー菌根菌胞子の増殖

福田健一* 大門弘幸
大阪府立大学大学院生命環境科学研究科
(*連絡先 E-mail:k-fukuda@plant.osakafu-u.ac.jp)

アーバスキュラー菌根菌（AM菌）による農作物の収量増加への関与については、国内外において多くの報告がある。土壤中の養分、特に根の近傍で欠乏しやすいリンを菌根菌から菌系が吸収し、宿主植物のリン吸収を改善することがよく知られている。また最近では、乾燥、塩分等の環境ストレス条件下での作物の生育に対する明らかな接種効果が示されており、人为的なAM菌接種による作物生産性の向上が期待される。AM菌は絶対共生菌であるため、接種試験用の胞子増殖や雑菌培養には植物を使った比較的規模の大きいポット栽培が必要である。しかし、他の菌株によるコンタミや土壤からの胞子回収が困難といった問題がある。本研究では、Rhizobium rhizogenesの国内産野生菌株（MAFF210266）がもつrol（rooty loci）遺伝子を導入したLotus corniculatusの培養系を利用し、2種類のAM菌（Gigaspora margarita, Glomus intraradices）胞子の無菌増殖系の確立を試みた。

L. corniculatusの毛状根（Fukuda et al. 2007）を、修正Struulu-Romand培地（mg/L: MgSO4·7H2O, 739; KNO3, 76; KH2PO4, 4.1; Ca(NO3)2 · 4H2O, 359; NaFeEDTA, 8.0; KCl, 65; MnSO4·4H2O, 2.45; ZnSO4·7H2O, 0.29; H2BO3, 1.86; CuSO4·5H2O, 0.24; (NH4)6Mo7O24·4H2O, 0.035; Na2MoO4·2H2O, 0.0024; thiamine, 1.6; pyridoxine, 0.9; nicotinic acid, 1.0; calcium panthotenate, 0.9; cyanocobalamin, 0.4; biotin, 0.0009; sucrose, 10000; gellan gum, 3000）40mlを添加した9cmシャーレに植床し、Gi. margaritaまたはGi. intraradicesの表面殺菌した胞子を接種した。

接種30日後に観察したところ、2菌系の接種区とともに“Branched absorbing structures（BAS-s）”が観察された。また、Gi. margarita接種区で、外生菌糸に助細胞の形成が認められたが、胞子の形成は観察されなかった。一方、Gi. intraradices区では、直径が50μm程度の成熟していない胞子の形成が観察された。接種90日後に再度、シャーレを観察したところ、Gi. margarita接種区においても胞子の形成が観察され、その直径は300μm程度であった。一方、Gi. intraradices区では、直径が約100μmの成熟した胞子も多数認められた。

このようなin vitroの毛状根培養系では、ポット栽培での問題点を解決できる可能性があり、無菌的雑菌培養や培養面積の縮小化を可能とするとともに、胞子増殖系の量化、外生菌糸やBAS-sなどの形態構造の観察、細胞の形態をさらに向上させるための培養・培地条件を検討中である。

毛状根の培養法については、宮崎大学フロンティア科学実験総合センターの明石良博士、橋口正樹博士に、またAM菌については、畜産草研研究所の大友亜博士、小島知子博士にそれぞれ貴重な情報をいただいた。ここに記して謝意を表する。
P-16
圃場条件下における根粒菌および菌根菌の接種が
ラッカセイ生育および根系形成におよぼす影響

森原百合*1・田島亮介*1・阿部 淳2・森田茂紀1
1東京大学大学院農学研究科附属農場・*2東京大学大学院農学研究科
(*E-mail: nhyyr@f.m.u-tokyo.ac.jp)

材料および方法
ラッカセイ(Arachis hypogea L.)品種の千葉半立の栽培試験を、東京大学大学院農学研究科附属農場内の圃場で2006年と2007年に行った。慣行施肥で5月下旬に畦間70cm、株間30cmの点播した際、根粒菌(十勝農業協同連合組合会‘まめぞう’Bradyrhizobium ssp.; B)、菌根菌(セントラル硝子株'セラキコン'Gigaspora margarita; G)および根粒菌と根粒菌の両方(B+G)を接種、もしくは無接種(C)の4処理3反復設けた。開花期と収穫期に、地上部と、根系を含む土壌モノリスを採取した。根系を丁寧に洗出し、主根を基部から基端へ5cmずつ、次に各主根断片より5個1次側根を主根側から基端へ5cmずつ切り分かった。主茎長、地上部乾物重、英数、1次側根の本数と長さ、直径別の根粒形成数、菌根菌感染率を測定し、二元配置分散分析を行った。なお、2007年の結果については根粒形成数および菌根菌感染率のみを示す。

結果および考察
地上部の生育および収量については、開花期と収穫期の両時期において、B、Gおよびそれらの交互作用は認められなかったが、根系形成については収穫期にB×Gの交互作用が認められた(2006年のみ)。すなわち、B+G個体では、主根基部側(基部から0.5, 5-10 cm)における1次側根の形成がB+G接種により促され、1次側根の本数が増加した(p<0.05)。それにより、B+G個体では、1次側根長及び有意に増大した(p<0.01)。根粒形成については、2006、2007両年の収穫期に、B+G個体で直径1-2 mmの根粒が多く形成される傾向が見られた。直径1-2 mmの根粒は、窒素固定能が他のサイズの根粒に比べて高いことが報告されており、B+G個体が生育後期でも十分な窒素を根粒から獲得できる可能性を示唆するものである。また、菌根菌感染率については、2006、2007両年にG接種の効果が認められ、菌根菌感染率は1%水準で有意に増大した。このことより、多くの種類の菌根菌が常在する圃場においてもG接種が有効であると言える。現在、2007年の地上部の生育および収量と根系形成の関連性について解析を進めている。

本研究は、文部科学省科学研究費補助金の助成を受けた。ラッカセイ種子は千葉県農業総合研究センター、根粒菌は十勝農協連より分譲頂いた。圃場管理においては東京大学大学院農学生命科学研究科附属農場技術部園芸系技術科職員の皆様にご協力賜った。ここに記し深謝する。
東京大学大学院農学生命科学研究所附属農場（東大農場）には、1980年以降継続している連用試験圃場があり、夏はダイズ（トウモロコシ）、冬はオオムギを栽培している。本研究では、この連用試験圃場内で施ふの異なる3処理区を設定し、夏作と冬作における作物生育、また、根圏土壌と非根圏土壌の土壤微生物の違いを比較検討した。

【材料と方法】①栽培条件と生育調査・根系調査 東大農場内において表土を剥いだ立川ローム（赤土）の圃場で、無施肥区、化学肥料施肥区（化肥区）、堆肥施肥区（堆肥区）を各3反復、表土の黒ボク土（黒土）を残した圃場で同様の処理区を各1反復を設け、冬はオオムギ（ドリルムギ）、夏はダイズ（エンレイ）を栽培した。オオムギは秋期（5月）に1回、ダイズは栄養生長期（7月）と収穫期（10月）の2回、地上部の生育（オオムギは草丈と穂数、ダイズは草丈）を測定するとともに、ライナーエ式採土器を用いて地表から深さ30cmまでに分布する根を採取して重量を測定した。②連用試験圃場の調査 オオムギとダイズの株元の土壌を根とともにスクップで採取し、水中分画法により根圏土壌を調査した。また、Bulk土壤を非根圏土壌として、培養試験では1/100肉エキス培地を用いた希釈平板法でコロニー（菌・細菌）数を測定した。そのほか、グラム染色やO-F試験、液状チオグリコール酸培地による無菌試験を実施して、土壤微生物の生理特性について検討した。

【結果と考察】赤土でのオオムギの草丈と穂数は化学肥料区が大きかったが、根量は化肥区と堆肥区のいずれも無施肥区より大きかった。黒土では、草丈・穂数は無施肥区<化学施肥区<堆肥区の順であったが、根量には処理区間差は見られなかった。根圏と非根圏における土壤微生物量は、それぞれの反復内では処理区間や根圏・非根圏間で差異が認められが、反復を統合して全体としてみると明確な傾向はなかった。黒土では赤土より微生物量が多かった。ダイズの草丈は赤土では無施肥区より化学施肥区・堆肥区が少し大きかったが、黒土では施肥の効果が見られなかった。根量は赤土では堆肥区<無施肥区<化学施肥区の順であったが、その差は小さかった。黒土では施肥した方が根量は少なかった。環境微生物量は、赤土の各反復内では処理区間と根圏・非根圏間で差異が認められたが、全体としては、堆肥区で非根圏土壌より根圏土壌の方が生物量が多い傾向が見られたほかは、明確な傾向は認められなかった。黒土では、収穫期の根圏土壌で微生物量が非常に多かった。

また、オオムギとダイズの根圏微生物の生理特性を比較すると、オオムギではいずれの処理区でもグラム陰性菌と陽性菌が混在していたが、O-F試験や無菌試験の結果は酸化型好気性菌が多いことを示した。一方、ダイズでは、いずれの処理区でもグラム陽性菌が優占しており、O-F試験や無菌試験の結果、化肥区は酸化型好気性菌が、無施肥区および堆肥区では操酵酸・偏性嫌気性菌が多かった。

【謝辞】本研究は、科研費基盤研究(B)「日本型高度土地利用作物栽培システム研究のための土壤微生物機能の解明と利用」（課題番号：17380009）の一環として実施した。研究対象とした圃場における栽培管理については、附属農場の久保田浩史氏を始めとする附属農場の技術職員の方々にお世話になった。
P-18
夏まきダイズ緑肥と根粒菌資材接種による
翌年のダイズ根粒着生向上

辻 博之・北海道農業研究センター（連絡先：tuzihiro@affrc.go.jp）

【はじめに】

北海道のダイズ生産の半分以上は水田転換畑で行われており、ダイズ初作地では根粒着生の不良
がしばしば認められる。筆者らは根粒菌の接種を行ってもダイズ初作地では根粒重は少なく、同一圃
場内の着生根粒重、生育マラが大きいこと、ダイズ初作地では着生した根粒重と生育期の地上部重に
有意な正の相関が認められる現象を以前報告した。ここではポット試験において作付前歴を変え、前
作夏作、麦栽培を想定した夏まきの緑肥への根粒菌接種、夏まきダイズ緑肥が、翌年のダイズの根粒着
生に及ぼす影響を報告する。

【材料と方法】

2006年4月に、ダイズ作付前歴が異なる北海道農研センター水田圃場の火山性土壌を、1/5000a
ワグネルポットに2kg（風乾土）充填し、表1に示した作付順序で作物を栽培した。2007年5月16日に
ダイズ（品種：ユキホレ）を播種し、播種後30日、播種後80日目の生育と根粒の着生状況を調
査した。前年夏作ダイズおよびトウモロコン、夏に播種した緑肥の一部に根粒菌資材（まめぞう・十
勝農協連）を接種した。接種実験はダイズの種子0.7kg（2300粒、1a分）に対して、4g接種し、その他
の作物へはダイズと同等の重量比で接種した。

【結果と考察】

2004年までダイズ作付履歴が無い圃場の土壌区では、履歴がある圃場の土壌区（No.11～14）に
比べて根粒の着生個体率、根粒数、根粒重が劣った。また、前年夏作（No.5：根粒菌接種、6：無接種）、
夏まき緑肥（No.1：根粒菌接種）としてのダイズを栽培すると、ダイズ播種後80日の根粒の着生個
体率を75％以上、個体あたり根粒重を100mg以上に高めた。

ダイズ以外の作物への根粒菌接種は、前年夏作のトウモロコン（No.32、33）では効果が認められ
なかったが、エンパック（No.8）への接種により、根粒の着生個体率、根粒数、根粒重の増加がみられ
た。根粒菌無接種のエンパック（No.7）は根粒着生の改善につながらなかった。

以上より、夏まきの緑肥にダイズを用い、根粒菌資材を接種することで、8月以降の短期間の栽
培でも次年度の根粒着生を改善できる。しかし、栽培前歴がある場合に比べ根粒の着生が遅れるた
め、葉色や生育の改善効果は十分ではない。なお、エンパックへの接種効果については確認を要する。

表1 試験の作付順序と根粒の着生

| 2004年までの
ダイズ作付前歴	転換1作目	夏まき緑肥	ダイズ接種後20日	ダイズ接種後80日目	菜色	根粒数	根粒重	地上部重	
作物	2005年	2006年	2006年5月	2007年					
前歴なし	トウモロコン	ダイズ	1	0.3	1.1	0.7	1.2	10.5	10.0
前歴あり	トウモロコン	ダイズ	11	0.1	1.1	1.2	1.0	1.2	1.2
前歴なし	トウモロコン	休閒	12	0.0	1.1	1.2	1.0	1.2	1.2
前歴あり	トウモロコン	休閒	13	0.0	1.1	1.2	1.0	1.2	1.2
前歴なし	トウモロコン	休閒	14	0.0	1.1	1.2	1.0	1.2	1.2

- 196 -
イネ種子根における内部組織の発達の環境応答
-根の片側をマンニトール処理する実験系-

赤井由紀1・唐原一郎1*・阿部 淳2
1富山大・理・生物, 2東京大・院・農学生命
(*E-mail: karahara@sci.u-toyama.ac.jp)

根の内皮や外皮の細胞には、カスパリー線が発達し、アプロプラストにおける輸送バリアとして、
植物に必要な溶質・水分などを根の内部に保持するとともに、不要な物質がアプロプラストを通じて
外部から侵入するのを防ぐ役割を果たしている。イネの根の土壤ストレスに対する反応を組織形
成のレベルで明らかにするため農業上非常に重要な課題であり、中でも環境の変化に対するカス
パリー線の発達の変化を明らかにするため、イネの耐ストレスのしくみを知る上で重要な鍵とな
る。例えば塩ストレス下ではカスパリー線の先端位置が根の先端に近づくが、それはカスパリー
線の形成が促進されたと考えられてきた。しかし、組織の発達を根の先端からの距離という指
標で表すと、組織形成のプロセスが細胞レベルで変化したのか否かはわからず、これを明らかにする
ためには、カスパリー線を形成した際の内皮細胞の栄養を推定する必要があることを筆者らは示し
発見してきた。しかし、内皮細胞の栄養を推定するためには、細胞数や細胞産生速度などのパラメータを調
べなければならず手間がかかる。もし同一個体つまり1本の根の中で、同じ栄養の内皮細胞で対照区
と処理区の設定を実施し、カスパリー線の形成の違いを比較することができれば、直接的に細胞レ
ベルでのカスパリー線の発達の変化を証明することができる。そこで本研究では、まず、イネ (Oryza
sativa ssp. Japonica cv. Nipponbare) を用いて、同一種子根内において対照区と処理区を設定し
内部組織の発達を比較することができる実験系を設定し、これを用いて、浸透圧ストレスがカスパ
リー線と通気組織の発達に与える影響について調べた。

イネを発芽させた後、シリンコンゴムのスペーサーを間に挿んで、270 mM の Mannitol を含
む Hoagland 寒天培地と Mannitol を含まないコントロール培地（対照区）を向かい合わせ、
種子根が両側の寒天培地に接触しながら、その間の空間を生長できるようにし、25℃の暗所
において4日間生育させた。次に、種子根の内部の形態観察を行った。マイクロスライサー
を用いて根の先端から2.5 mm おきに 100 μm の厚さの横断切片を作製し、ペルベリンおよび
アリリンブルーで染色後、蛍光顕微鏡下でカスパリー線の発達を調べ、切片内における処理
区と対照区のそれぞれの側でカスパリー線および通気組織の先端位置を同定した。その結
果、これらの発達には、処理区と対照区の間で差が見られ、内皮カスパリー線・通気組織の
いずれの場合も、処理区側では対照区側に比べて、より根の先端近くまで発達していた。つ
まり根の片側 Mannitol 処理により、これらの構造の偏差的な発達が誘導された。イネでは通
気組織形成は通常の developmental な過程で形成されるものと考えられてきた (Kawai et al.
1998) が、形成は modulate されうることも示唆された。
シロイヌナズナの根の形態形成を三次元レベルでモニターする - 過重力の影響 -

安藤 典子, 唐原 一郎*, 玉置 大介, 神阪 盛一郎
富山大学工学部

(*連絡先 E-mail: karahara@sci.u-toyama.ac.jp)

植物の形態形成には、光や温度、水など様々な非生物学的環境要因が関係している。その中でも重力は、地球上では常に一定の方向性を持ち、一定の大きさの重力ベクトルという形で常に植物体に影響を与えている。地球上で植物は、重力屈屈性という形で重力ベクトルのきわめて安定な性質を利用して根を地中へと伸ばし、形態形成を行い、土壌から水や栄養素をより効率的で獲得しており、さらに、地球上におけるこの1 gの重力環境は、生物にとってアプリオリに存在し、あまりにも当然の存在であり、かつそれを地球上で変化させることは容易ではないため、変化させた場合にこれまで植物学上の既知の知見がどうなるのかについてはほとんど知見である。しかし、このことは陸上植物の進化を考える上で、また宇宙基地や宇宙ステーションにおける作物栽培を実現するためにも重要な課題となる。これまでに重力ベクトルの方向の揺乱が重力屈屈性に与える影響は、クリノスタットを用いた実験例はあるが、重力ベクトルの大きさそのものを変える植物実験は少ない。そこで、私たちは、重力ベクトルの大きさ、つまり重力加速度を変化させた場合の、生長や屈屈性を含めた植物の形態形成を細胞レベルで解析することを目指した。この目的のためには、構造の単純な根はよいモデルである。

これまで根の形態形成の解析方法としては、一次元レベルでは生長の変化が、二次元レベルでは屈屈性がよく調べられているが、三次元レベルで解析した試みはない。また、重力加速度を変化させる方法としては、地上では遠心機による重力刺激が用いられるが、長時間にわたり処理して、形態形成をモニターすることは容易ではない。そこで私たちは、シロイヌナズナ (Arabidopsis thaliana L.) を用いて、種子を荒天培地に埋め込むことで、過重力刺激を長時間にわたって与えながら、根の生長の軌跡を三次元レベルでモニターすることができる、簡便な実験系を確立し、これを用いて一次根の生長および重力屈屈性に対する過重力刺激の影響を調べた。実験方法は、コニカルチューブ内の0.3gレベルに種子を埋め込むように播種し、発芽を誘導するために低温処理および一時的な白色光処理を行った後、遠心機を用い、暗所において、播種以降72時間にわたって芽生えに過重力処理（300 x g）を行った。

処理後、根の成長を調べたところ、1 x g 対照区と比べて有意な変化は見られなかった。一方、過重力環境下では根の生長方向にばらつきが観察された。根の先端部の位置のばらつき具合を定量的に比較したところ、過重力処理区では対照区と比べてばらつきが有意に大きくなり、過重力処理区では重力ベクトルの方向に対する重力屈屈の正確さが低下することが示唆された。

現在、オキシン極性輸送などの阻害剤が根の形態形成に与える影響をこの方法でモニターし、重力刺激の場合と比較することを試みている。また、重力屈屈性に関与していると考えられているアミロプラストの動態が、過重力処理により重力ベクトル方向に生長しなくなった根において、どのように変化しているのかの観察も行っており、それらの結果も合わせて報告する。
様々な環境条件下で植物の生育を評価する場合、植物の根が植物生育のどの時期に土壌中のどの位置にどれくらい存在しているかを調査することが重要である。この調査では、実際に植物の根系を土壌から掘り出し、目的に応じて根量や根長を評価することになる。特に根長を評価することは根の養分吸収を考える上で重要であるが、非常に効率がかかる。これについては実際に手で測定する他、ルートスキャナを用いたり、画像解析によって評価する方法が提案されている。画像解析によって根長を評価するには、解析用ソフトウェアが必要である。根長を評価できるソフトウェアは市場されているが、極めて高価であり（例えば WINROOF（MITANI CORP., 日本）は約45,000円、WINRHIZO（Regent Instruments Inc., カナダ）は1,000,000円）、多くの研究者が利用することは困難である。一方、Tanakaら（1995）やKimuraら（1999）は無料の画像解析ソフトウェア NIHImage（NIH, アメリカ）を用いて根長を評価する方法を提案した。木村がプログラマを配布しているため(http://www.agri.tohoku.ac.jp/soil/kimura/rootingmanual.html)、これらの方法は多くの研究者が利用可能であるが、プログラムを利用するに必要な NIHImage の開発が現在すでに終了しており、利用できないコンピュータも多い。その後線として開発・配布されている画像解析ソフトウェア ImageJ（NIH, アメリカ）は様々なOS上で利用可能であるが、こちらでは木村の根長測定プログラムを用いることができない。そこで本研究では、ImageJ を用いてKimuraら（1999）の方法と、同時に他の根長測定方法であるTanakaら（1995）、PanとBolton（1991）の方法を利用して根長測定プログラムを作成するとともに、そのプログラムを用いて複数の画像を自動的に測定できるように改良した。

Kimuraら（1999）、Tanakaら（1995）、PanとBolton（1991）の方法を引用した研究論文数はWeb of Science（ISI, アメリカ）で調べたところ、それぞれ16、8、51であった。ただしKimuraら（1999）の方法はKimura and Yamasaki（2001）あるいはKimura and Yamasaki（2003）として引用されている場合もあり、それらを合計するとKimuraの方法を引用している研究論文数は33であった。このうちKimuraら（1999）とPanとBolton（1991）は1990年代後半に多く引用され、現在も引用されていることから、これらの手法で根長を評価することは現在でも利用可能であると考えられた。三つの方法はどれも画像を画像化処理した後に、根を幅1ピクセルの線としてから、異なる方法で根長を算定する方法である。根をランダムに配置した場合に、これら三つの方法で測定した根長と実際の根長との誤差がどの程度であるか論理的に算出することは難しい。そこで、Kimuraら（1999）、Tanakaら（1995）、およびPanとBolton（1991）の方法それぞれの場合について、1000回試行のシミュレーションを行ったところ、それぞれの手法と実際の根長との平均的な誤差は3.5％、4.6％、0.6％であった。その標準偏差は0.016、0.024、0.077であった。この結果からKimuraら（1999）の方法が最も精度が高い可能性が示唆された。

また、本研究では、根長を評価した後に、他の測定も可能なように、根の画像は背景を黒色にし根を染色させに取り込んだ。画像の取込みにはCanoscan LiDE500F(Canon, 日本)を用いた。このとき、手動で測定した根長とKimuraら（1999）の方法で評価した根長を比較したところ、平均して、手動で測定した根長が7％程度短かった。根長の評価を複数の画像で連続しておこなう場合、画像を画像化すると画像の境界価が問題となると考えられるため、ひとつの画像を異なる境界値で画像化して、根長測定をおこなったが、わずかな境界値の差異は大きな差異は見られなかった。そのため画像ごとに境界値を設定しなくても連続して根長を評価できると考えられた。また、その要所時間は、300dpi、A4サイズの画像100枚でWindows XP（CPU：1.66GHz、メモリ：512MB）、MacOSX(CPU：1.83GHz、メモリ：1GB)でそれぞれ約43分、25分であった。これらの結果、今回作成した根長測定プログラムによって、短時間で根長を評価できると考えられた。

引用文献
P-22
根系による栄養繁殖を行うイヌガラシ属雑草の生態

Growth and reproduction of Rorippa weed species that propagate by root system

宮崎京（独）畜産草地研究所 佐藤光（福島県会津農林事務所会津坂下農業普及所金山普及所）
Katsura Miyazaki (NILGS), Mitsuru Sato (Fukushima Prefecture), kayun@affrc.go.jp

アブラナ科イヌガラシ属（Rorippa spp.）のキレハイイヌガラシ（R. sylvestris（L.）Besser）、イヌガラシ（R. indica（L.）Hiern）、スカンタゴポウ（R. palustris（L.）Besser）は根系で栄養繁殖する雑草である。また、ヒメイヌガラシ（Rorippa x brachyceras（Honda）Kitam. Ex T. Shimizu）は、スカンタゴポウとイヌガラシの不稔性雛種とされ、普通に野外で確認される。これらの種では防除後の再生と残草が多いことから、生態に基づく適切な防除法の解明とその普及が必要であるが、生態とその季節性は明らかでない。ここでは、基本的な季節性の解明を目的とし、各種の根断片からの季節成長様式と、スカ タゴポウの秋季発生圃場における実生サイズ構成について結果を示した。

【材料および方法】まず、各種の根断片からの成長様式をポット実験により調査した。2007年2月22日に畜産草地研究所（栃木県那須塩原市）で育（前作トウモロコシ）からスカタゴポウ、イヌガラシ、ヒメイヌガラシの個体全体を採取した。2006年11月25日に福島県農業総合センター会津地域研究所でキレハイイヌガラシの個体全体を採取した。いずれも根を洗い、直径2.5 mm の根を選び、2 cm に切断し、根断片を4月4日および7月31日に10000a ポットにそれぞれ植え付け、育成した。いずれも2週間に約1回、草高を調査した。4月植えについては、個体ごとの開花開始日を調査した。4月植えでは6月19日および8月15日に、7月植えでは7月31日、8月15日および9月13日にポットから個体を回収した。それぞれ、根系の土を洗い流し、3日間70℃で乾燥させ、器官別の乾物重を測定した。反復は4と3した。次に、圃場におけるスカタゴポウの実生サイズ構成を、2007年10月23日に、畜産草地研究所内のオーチャードグラス新植圃場で調査した。前作はグリーンミレットで、収穫後の8月22日にロータリ栽培し、9月3日にオーチャードグラスを播種した。調査時にオーチャードグラスは約10 cm だった。圃場内の植え方で約10 m のラインを10 m 間隔で3本引き、各ラインに沿って2 m 間隔で50 cm 四方のコドラートを設置し（合計15個）、その中に出現した全てのスカタゴポウの地上部および根の乾物重を測定した。

【結果】4月4日に植えつけた個体の開花は、約40日後の5月15日前後から、スカタゴポウ、ヒメイヌガラシ、イヌガラシの順に始まり、6月中旬には全ての個体が開花に至った。3種は開花期間が重複し、キレハイイヌガラシは7月から開花を開始したためほとんど重複せず、また、開花しない個体もあった。結実は開花の順に生じ、スカタゴポウは結実後に個体全体が枯死し、ヒメイヌガラシおよびキレハイイヌガラシは、果実内での種子形成が不完全で、種子形成に至らないまま、地上部が枯死した。ヒメイヌガラシは花序が長く伸長し乾物も多く分配された。草高は4月・5月植えいずれもヒメイヌガラシの生長が早く最大だった。4月植えの個体では、スカタゴポウがイヌガラシよりも速く、大きく生長したが、7月植えの個体ではその関係が逆転した。キレハイイヌガラシはいずれも草の増加が速く、開花による抽苔時に15 cm 以上になることが観察された。スカタゴポウを除きいずれの種も、栄養生长、開花・結実、枯死、地下部からの再生を、シーズン内に数回繰り返すことが観察された。全種において回収された個体の乾物重は、7月植えより4月植えで大きい傾向がみられた。植え付け時期に関わらず、スカタゴポウは乾物を根系にほとんど分配せずに種子繁殖器官に多く分配し、イヌガラシおよびヒメイヌガラシは乾物を根系および種子繁殖器官にそれぞれある程度分配し、キレハイイヌガラシは根系に多く分配した。8月下旬に植えられた圃場におけるスカタゴポウの実生サイズ構成を、根乾物重と線形対数関係にあった地上乾物重で分類したところ、0.2 g までに集中した。開花個体は開花個体の約半数で、非開花個体は0.2 g までに集中した。以上の結果と他の報告から、スカタゴポウが夏を起点とする1年草であること、イヌガラシやヒメイヌガラシは多年草で夏の生育が良好であること、キレハイイヌガラシは栄養繁殖が旺盛で、季節的な傾向が他種に比べて弱いことが推測された。